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Abstract

Mediation analysis is routinely adopted by researchers from a wide range of applied
disciplines as a statistical tool to disentangle the causal pathways by which an exposure
or treatment affects an outcome. The counterfactual framework provides a language for
clearly defining path-specific effects of interest and has fostered a principled extension of
mediation analysis beyond the context of linear models. This paper describes medflex,
an R package that implements some recent developments in mediation analysis embedded
within the counterfactual framework. The medflex package offers a set of ready-made
functions for fitting natural effect models, a novel class of causal models which directly
parameterize the path-specific effects of interest, thereby adding flexibility to existing
software packages for mediation analysis, in particular with respect to hypothesis testing
and parsimony. In this paper, we give a comprehensive overview of the functionalities of
the medflex package.

Keywords: causal inference, mediation analysis, direct effect, indirect effect, natural effect
models, medflex, R.

1. Introduction

Empirical studies often aim at gaining insight into the underlying mechanisms by which an
exposure or treatment affects an outcome of interest. Mediation analysis, as popularized in
psychology and the social sciences by Judd and Kenny (1981) and Baron and Kenny (1986),
has been widely adopted as a statistical tool to shed light on these mechanisms, by enabling
the decomposition of total causal effects into an indirect effect through a hypothesized inter-
mediate variable or mediator and the remaining direct effect. Although its initial formulations
were restricted to the context of linear regression models, several attempts have been made to
extend the application of traditional estimators for indirect effects (i.e., product-of-coefficients
and difference-in-coefficients estimators) beyond linear settings (e.g., MacKinnon and Dwyer
1993; MacKinnon, Lockwood, Brown, Wang, and Hoffman 2007; Hayes and Preacher 2010;
Tacobucci 2012). However, these extensions lack formal justification and yield effect estimates
that are often difficult to interpret (e.g., Pearl 2012).

Recent advances from the causal inference literature (e.g., Albert 2008; Albert and Nelson
2011; Avin, Shpitser, and Pearl 2005; Imai, Keele, and Yamamoto 2010b; Pearl 2001, 2012;
Robins and Greenland 1992; VanderWeele and Vansteelandt 2009, 2010) have furthered these
earlier attempts and improved both inference and interpretability of causal effect estimators
in nonlinear settings by building on the central notion of counterfactual or potential out-



2 Medflex: flexible mediation analysis in R

comes. This notion provides a framework that has aided in (i) formally defining direct and
indirect effects (in a way that is not tied to a specific statistical model), (ii) describing the
conditions required for their identification (unveiling and formalizing often implicitly made
causal assumptions) and (iii) assessing the robustness of empirical findings against violations
of these identification conditions (i.e., sensitivity analysis).

For instance, Imai, Keele, and Tingley (2010a) proposed mediation analysis techniques that
can be applied within a larger class of nonlinear models. They implemented these in a user-
friendly R package, called mediation (Tingley, Yamamoto, Hirose, Keele, and Imai 2014; see
Hicks and Tingley 2011 for a version in Stata (StataCorp 2013) with more limited func-
tionality). More recently, Valeri and VanderWeele (2013) reviewed the latest developments
in mediation analysis for nonlinear models, focusing on exposure-mediator interactions, and
provided SAS (SAS Institute Inc. 2014) and SPSS (IBM Corporation 2013) macros, enabling
practitioners to easily conduct these methods using well-known commercial packages. Simi-
larly, Emsley and Liu (2013) and Muthén and Asparouhov (2015) described how direct and
indirect effects as defined in the counterfactual framework can be estimated in Stata and
via extended types of structural equation models in Mplus (Muthén and Muthén 1998-2012),
respectively.

In this paper, we introduce medflex, an R package that allows for flexible estimation of
direct and indirect effects while accommodating some of the limitations of other available
packages. More specifically, we make use of novel so-called natural effect models (Lange,
Vansteelandt, and Bekaert 2012; Lange, Rasmussen, and Thygesen 2014; Loeys, Moerkerke,
De Smet, Buysse, Steen, and Vansteelandt 2013; Vansteelandt, Bekaert, and Lange 2012),
which directly parameterize the target causal estimands on their most natural scale. This
renders formal testing and interpretation more straightforward compared to other approaches
as implemented in the aforementioned software applications. The medflex package is freely
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=medflex (R Core Team 2014).

Throughout, the functionalities of the medflex package will be illustrated using data from
a survey study that was part of the Interdisciplinary Project for the Optimization of Sep-
aration trajectories (IPOS). This large-scale project involved the recruitment of individuals
who divorced between March 2008 and March 2009 in four major courts in Flanders. It
aimed to improve the quality of life in families during and after the divorce by translating
research findings into practical guidelines for separation specialists (such as lawyers, judges,
psychologists, welfare workers...) and by promoting evidence-based policy. The correspond-
ing dataset (UPBdata) is included in the package and involves a subsample of 385 individuals
who responded to a battery of questionnaires related to romantic relationship characteristics
(such as adult attachment style) and breakup characteristics (such as breakup initiator sta-
tus, experiencing negative affectivity and engaging in unwanted pursuit behaviors; UPB) (De
Smet, Loeys, and Buysse 2012). Respondents were asked to imagine their former partner
as well as possible and to remember how they generally felt in their relationship before the
breakup when completing the attachment style questionnaire. The mediation hypothesis of
interest concerned the question whether the level of emotional distress or negative affectivity
experienced during the breakup can be regarded as an intermediate mechanism (M) through
which attachment style towards the ex-partner before the breakup (X) exerts its influence on
displaying UPBs after the breakup (Y) (Loeys et al. 2013).

In the next section, we briefly introduce the mediation formula (Pearl 2001, 2012), which
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is the predominant vehicle for effect decomposition within the counterfactual framework.
Advantages of natural effect models over direct application of the mediation formula will also
be discussed in more detail. We then explain how to fit natural effect models, focusing on two
missing data techniques for fitting these models and demonstrate how these approaches can be
implemented in R using the medflex package (section 3). Next, we demonstrate how different
types of exposure and mediator variables can be dealt with (section 4) and how to assess
effect modification of natural effects (e.g., exposure-mediator interactions and moderated
mediation) (section 5). Tools are provided for deriving and visualizing different causal effects
estimates (section 6) and for estimating population-average natural effects (section 7) and
natural indirect effects as defined through multiple intermediate pathways jointly (section 8).
Finally, in section 9, we give some concluding remarks and list some extensions of the package
which are planned to be implemented in the near future.

2. The mediation formula

2.1. Counterfactual outcomes and effect decomposition

A major appeal of the counterfactual framework is that it enables to decompose the total
causal effect into a so-called natural direct and natural indirect effect, irrespective of the data
distribution or scale of the effect (Robins and Greenland 1992).

Suppose that the outcome Y of an individual ¢ that would have been observed if, possibly
contrary to the fact, that individual would have been assigned to treatment arm x (or would
have been exposed at exposure level z), is represented by the counterfactual or potential
outcome Y;(z). The total causal effect of X on Y (for individual i) corresponding to a
one-unit change in exposure or treatment level can then be derived by comparing Y;(1) and
Y;(0). For instance, on an additive scale, the individual total causal effect can be expressed as
Y;i(1)—Y;(0). Adopting this counterfactual notation naturally leads to framing causal inference
as a missing data problem: for each individual ¢, only Y;(X;) (=Y;) is observed. This missing
data problem has been referred to by Holland (1986) as the ‘Fundamental Problem of Causal
Inference’. As a result, average causal effects E(Y (1) — Y (0)) can only be estimated by
E(Y|X =1)—E(Y|X = 0) under the assumption that there is no confounding between X and
Y. This ignorability assumption is often expressed in terms of the following counterfactual
independence:
Y(z)llX.

In observational studies, this assumption is usually unrealistic: as exposed subjects typically
differ from unexposed subjects, the average causal effect E(Y (1) — Y'(0)) can no longer be
estimated by E(Y|X = 1) — E(Y|X = 0) without bias, as in randomized experiments. Such
violations are typically remedied by instead assuming conditional ignorability or (conditional)
independence within strata of a given set of measured baseline covariates C":

Y(x)lLX|C,

so that conditional causal effects E(Y (1) — Y (0)|C) can still be estimated by E(Y|X =1,C) —
E(Y|X = 0,C) without bias. This weaker assumption, however, implies that a given set of
measured baseline covariates C' is deemed sufficient to control for confounding, and is therefore
often referred to as the assumption of ‘no unmeasured confounding’ (Robins 1992).
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The traditional notion of direct effects corresponds to that of so-called controlled direct effects,
which, e.g., on the additive scale, express the expected change in Y induced by a one-unit
change in X while controlling the mediator M uniformly at a fixed level m for all subjects:

E{Y(1,m) —Y(0,m)}.

Counterfactual outcomes Y (1,m) and Y (0,m) correspond to values the outcome would have
taken if the mediator were set to a fixed level m, while, at the same time, exposure levels
were set to either 1 or 0. As indicated by Robins and Greenland (1992) and Pearl (2001),
this notion does not provide an equivalent operational definition of an indirect effect since
it is impossible to control any of the variables in such a way that the effect of X on Y
circumvents the direct pathway. Robins and Greenland (1992) introduced an alternative
definition to overcome this limitation. Considering mediator levels M (x) that would naturally
have been observed under exposure level z, rather than a fixed mediator level m, leads to
a definition of the direct effect that allows for natural variation in mediator levels and also
provides a complementary definition for the indirect effect. This alternative definition calls
for the introduction of nested counterfactuals Y (x, M (z*)), which play a key role for effect
decomposition in the counterfactual framework. The natural direct effect

E{Y (1, M(0)) — Y (0, M(0))}

then expresses the expected change in Y induced by a one-unit change in X while keeping M
fixed at mediator levels that would naturally have been observed if X was left unchanged (at
0). Similarly, the natural indirect effect

E{Y (1, M(1)) — Y (1, M(0))}

expresses the expected change in Y induced by altering the levels of M from those that would
naturally have been observed if X were left unchanged (at 1) to those that we would obtain
if X were set to 0, while simultaneously keeping X fixed at its original value. It can easily
be seen that these two expressions add to the expected total effect E{Y (1) — Y (0)} under the
composition assumption that Y (z, M (z)) = Y (z) (VanderWeele and Vansteelandt 2009).

As for total causal effects, identification of natural direct and indirect effects relies on strong
structural assumptions. In the context of mediation analysis, the identification assumptions
can be encoded in a causal diagram interpreted as a non-parametric structural equation
model with independent errors. Under such diagram, identification is possible under a set
of conditional independencies reflecting that a given set of baseline covariates C' is sufficient
to control not only for (A1) confounding between X and Y, but also for (A2) confounding
between X and M, and (A3) between M and Y (after adjustment for X), and that (A4) no
confounders of the M-Y relationship are affected by X (i.e., no exposure-induced confounding)
(Imai et al. 2010b; Pearl 2001; VanderWeele and Vansteelandt 2009). Whereas the first two
assumptions by definition hold in randomized experiments, the latter two do not. Although
Judd and Kenny (1981) initially pointed to its importance, assumption (A3) since has largely
been ignored in much of the social sciences literature, as witnessed by many mediation studies
not controlling for confounders of the M-Y relationship. In recent years, however, this issue
has been brought back to attention within the social sciences (e.g., Bullock, Green, and Ha
2010; MacKinnon 2008).
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2.2. The mediation formula

The language of counterfactuals has enabled to clearly define causal effects in a more generic,
non-parametric way, but has also promoted a more principled approach to estimating these
effects than the one offered by the traditional SEM literature from the social sciences, which
was mainly entrenched in linear analysis. For this purpose, the mediation formula (Pearl 2001,
2012) plays a pivotal role. It prescribes estimating the expected value of nested counterfactuals
by standardizing predictions from the outcome model corresponding to exposure level x under
the mediator distribution corresponding to exposure level x*:

E{Y(x,M(z"))|C} = Z EY|X =2, M =m,C)Pr(M =m|X =z%,C).

This weighted sum can be calculated based on any type of statistical model and has been
shown to yield closed-form expressions for the natural indirect effect that encompass the
traditional difference-in-coefficients and product-of-coefficient estimators when confined to
strictly linear models (e.g., VanderWeele and Vansteelandt 2009; Pearl 2012). However, as
soon as moving beyond linear settings, the latter estimators no longer coincide with their
corresponding mediation formula expressions and no longer yield readily interpretable causal
effect estimates (as formalized in the counterfactual framework).!

More recently, closed-form expressions for natural direct and indirect effects as defined on
both additive and ratio scales have been derived for a limited number of nonlinear scenarios
(VanderWeele and Vansteelandt 2009, 2010; Valeri and VanderWeele 2013).

2.3. Applying the mediation formula in practice

Software applications for obtaining closed-form solutions derived from the mediation formula,
as well as their corresponding delta method (or bootstrap) standard errors, have been made
available as SPSS and SAS macros (Valeri and VanderWeele 2013) and as the Stata module
PARAMED (Emsley and Liu 2013). More recently, Muthén and Asparouhov (2015) demon-
strated how natural effect estimates can be obtained via extended types of structural equation
models in Mplus, even in the presence of latent variables. However, such closed-form expres-
sions can often not readily be obtained, for instance when combining a linear model for the
mediator and a logistic model for the outcome.

Imai et al. (2010b) addressed this issue and instead suggested a more generic approach based
on Monte-Carlo integration methods, which they implemented in the R package mediation
(Tingley et al. 2014). Whereas its lightweight version in Stata (Hicks and Tingley 2011)
and the Stata module gformula (Daniel, De Stavola, and Cousens 2011), which adopts a
similar simulation-based approach, are restricted to parametric models, this R package also
allows to specify semi- or non-parametric models for the mediator and outcome. Despite
being computationally intensive, these offer more flexibility than the applications based on a
purely analytical approach. In addition, the mediation package offers useful extensions, such
as methods for dealing with multiple mediators and treatment noncompliance, while at the
same time enabling users to evaluate the robustness of their findings to potential unmeasured
confounding in a widely applicable sensitivity analysis.

!Muthén and Asparouhov (2015) give an intuitive account for SEM practitioners explaining why the
product-of-coefficient estimator fails when applied in nonlinear settings or settings involving exposure-mediator
interactions. Nonetheless, the product-of-coefficients method can still be useful for testing the null hypothesis
of no indirect effect (VanderWeele 2011; Vansteelandt et al. 2012).



6 Medflex: flexible mediation analysis in R

1.16

—1|C}
—1]C]

1.14
\

odds{Y (z,M(z+1))
odds{Y (z,M(x))
1.12

1.10

Figure 1: Estimated (total) natural indirect effect odds ratios corresponding to a one-unit
change in anxious attachment level as a function of different reference levels for anxious
attachment level = (as obtained through direct application of the mediation formula). These
are conditional estimates for 43-year-old men (solid curve) and women (dashed curve) with
intermediate education levels.

A drawback of direct application of the mediation formula, however, is that combinations of
simple models for the mediator and for the outcome often result in complex expressions for
natural direct and indirect effects (Lange et al. 2012; Vansteelandt et al. 2012). For instance,
when using logistic regression models

logitPr(M = 1|X, C) = Qp + o1 X + QQC
logit Pr(Y = 1|X, M, C) = o + 1 X + oM + B5C

for binary mediators and outcomes, the mediation formula yields

Pr(Y(z, M(z*)) = 1|C) = expit (B + 1z + P2 + B3C) expit (ap + anz™ + aaC)
+ expit (By + Brx + B3C) {1 — expit (ag + c1x™ + a2C) },

an expression which depends on exposure and covariate levels in a complicated way. Even
though none of the postulated models include interaction terms reflecting effect modification,
derived direct and indirect effects estimates will vary with different exposure or covariate
levels. This is also illustrated in figure 1, which depicts estimates for the natural indirect
effect odds ratio, as obtained by applying the mediation formula to these models fitted to
our example dataset (using a dichotomized version of the mediator and baseline covariates
C' including gender, age and education level). As pointed out before by Lange et al. (2012)
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and Vansteelandt et al. (2012), these convoluted expressions render results difficult to report
and hypotheses testing (e.g., testing for moderated mediation) infeasible. As a result, tests
of the null hypothesis that the direct or indirect effect is independent of covariates will likely
suffer from inflated type I error rates. In certain cases, this complexity can pose a major
impediment to routine application of the mediation formula.

Moreover, the mediation package only provides natural effect estimates on the additive scale.
This may complicate estimation and inference in nonlinear outcome models, mainly when
dealing with continuous exposures or covariates, because of induced nonadditivity. Specif-
ically, because the indirect effect is not encoded by a single parameter, but may take on a
different value for each level of x, the null hypothesis of no indirect effect over the entire range
of exposure levels becomes difficult to test. Similarly, although the mediation package enables
users to test for effect modification in nonlinear models (i.e., either treatment-mediator inter-
actions or moderated mediation), these hypothesis tests probe research questions in terms of
risk differences that are tied to pre-specified exposure or covariate levels. A concern is that
these levels might, at least in some applications, need to be chosen in a rather arbitrary way
(Loeys et al. 2013).

An approach that circumvents the aforementioned complexity but is closely related to applica-
tion of the mediation formula was proposed recently by Lange et al. (2012) and Vansteelandt
et al. (2012). These authors proposed to directly model the natural effects and introduced
a novel class of mean models for nested counterfactuals, which they termed natural effect
models (also see van der Laan and Petersen 2008, for a similar approach). This approach is
implemented in the medflex package and provides a viable alternative to the aforementioned
software applications because

e it can handle a larger class of parametric models for the mediator and outcome than
the software applications that rely on closed-form expressions (refer to Section 4),

o cffect estimates can be expressed on more natural scales than the additive scale (i.e.,
a scale that corresponds to the link-function of the outcome model), thereby avoiding
potential (artifactual) dependency on exposure or covariate levels,

e natural effect models simplify testing since the hypotheses of interest can always be
captured by one or more model parameters,

e for the most common types of parametric models robust standard errors (based on the
sandwich estimator) are available as an alternative to more computer-intensive boot-
strap standard errors.

In the next section, we describe this novel class of causal models together with two different
approaches that have been suggested in Lange et al. (2012) and Vansteelandt et al. (2012).

3. Mediation analysis via natural effect models

Natural effect models are conditional mean models for nested counterfactuals Y (z, M (z*)):

E{Y (2, M(2"))|C} = g~ H{BW (z,2",C)}
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with ¢(-) a known link function (e.g., the identity or logit link), W (z,z*,C) a known vector
with components that may depend on z, * and (', and § a vector including parameters that
encode the natural effects of interest.? It can, for instance, easily be inferred that in model

E{Y (2, M(2"))|C} = Bo + Brx + Baz” + B3,

(1 captures the natural direct effect whereas (3 captures the natural indirect effect, both
corresponding to a one-unit increase in the exposure level. With g(-) the log-link function,
for example, the Poisson regression model

log E{Y (z, M (z*))|C} = Bo + Srz + Pazx™ + B3C,

enables to quantify the natural direct and indirect effect for count outcomes on a relative and
more natural scale. Specifically, in this model, exp(f;1) captures the natural direct effect rate
ratio

E{Y(z+ 1, M(x))|C}
E{Y (z, M(x))|C}
whereas exp(f2) captures the natural indirect effect rate ratio
E{Y(z, M(x +1))|C}
E{Y (2, M(z))|C}

corresponding to a one-unit increase in exposure level. Since each of the effects or quantities
of interest are encoded by parameters indexing the natural effect model, the aforementioned
limitations related to direct application of the mediation formula can be overcome. As will
be illustrated, in nonlinear settings, this facilitates interpretation and hypothesis testing.

3.1. Fitting natural effect models

Before describing the two main approaches for fitting natural effect methods, we first return
to our motivating example. The corresponding dataset will then be used to both illustrate
these approaches and to demonstrate how they can be implemented in R.

After loading the medflex package, displaying the first few rows of the example dataset
UPBdata provides some insight into the data:

R> library(medflex)
R> data(UPBdata)
R> head(UPBdata)

att attbin attcat negaff initiator gender educ age UPB

1 1.001 1 M 0.840 myself F M 41 1
2 -0.709 0 L -1.257 both M M 42 O
3 -0.709 0 L -1.202 both F H 43 O
4 0.606 1 M -0.374 ex-partner M H 52 O
5 0.212 1 M 1.945 ex-partner M M 32 1
6 2.0562 1 H -0.816 ex-partner M H 47 O

2 Although Lange et al. (2012) primarily described these models as marginal or population-average mean
models, throughout this paper we will describe natural effect models as conditional or stratum-specific mean
models (i.e., conditional on baseline covariates, as in Vansteelandt et al. 2012). A weighting method for fitting
marginal or population-average natural effect models is presented in section 7.
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Figure 2: Causal diagram reflecting the mediation hypothesis.

De Smet et al. (2012) and Loeys et al. (2013) proposed emotional distress or the amount of
negative affectivity experienced during the breakup as a mediating variable for the effect of
attachment style towards the ex-partner before the breakup on displaying unwanted pursuit
behaviors after the breakup. Figure 2 depicts the causal diagram that reflects this mediation
hypothesis along with its aforementioned identification assumptions.

As direct and indirect effects are most easily understood for binary exposures, we will use a
dichotomized version of anxious attachment level (attbin) for didactive purposes. Moreover,
negative affectivity (negaff) has been standardized to allow for easily interpretable effect
estimates. The outcome variable unwanted pursuit behavior (UPB) indicates whether (=1) or
not (=0) the respondent has engaged in any unwanted pursuit behaviors.

A relatively simple natural effect model is the logistic model
logit Pr{Y (z, M(2*)) = 1|C} = By + frx + Baz™ + B5C, (1)

with z and x* corresponding to hypothetical levels of the dichotomized version of the anxious
attachment variable (i.e., 0 for lower than average or 1 otherwise), M (z*) corresponding to
the level of negative affectivity that would have been reported if anxious attachment level were
set to z*, C' a set of baseline covariates, considered sufficient to control for confounding: age
(in years), gender and education level (educ; with H or ‘high’ indicating having obtained at
least a bachelor’s degree, M or ‘intermediate’ indicating having finished secondary school and
L or ‘low’ otherwise), and Y (x, M (z*)) corresponding to the UPB perpetration status that
would have been observed if anxious attachment level were set to x and negative affectivity
were set to the level that would have been reported if anxious attachment style were set to

T*.

i X, oz x* Yz, Mi(x*))
1 1 1 1 Y1
2 0 0 ©0

Yo

Table 1: Schematic display of the original dataset.

As an illustration, we schematically display the first two observations in Table 1. For each in-
dividual or observation unit 7, only the counterfactual outcome Y;(X;, M;(X;)), corresponding
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to Yi(x, M;(z*)) with = and x* equal to the observed exposure level X;, is observed. Postu-
lating a model for nested counterfactuals that encodes both natural direct and indirect effects
requires data in which either x or x* can be kept fixed within each individual while allowing
the other variable to vary. Such a procedure amounts to expanding the data along unob-
served (z,z*) combinations. Although, for the data at hand, three (z,z*) combinations are
unobserved for each individual, it is sufficient to introduce only one additional observation
corresponding to an unobserved combination for which x does not equal z* to disentangle
natural direct and indirect effects. This data expansion is illustrated in Table 2.

i X, oz x* Yi(x, Mi(x*))
1 1 1 1 Y1

1 1 1 0 .

2 0 0 O Yo

2 0 0 1

Table 2: Schematic display of the expanded dataset with missing counterfactual outcomes.

Fitting natural effect models then entails using well-established methods to deal with miss-
ingness in the outcome, which results from expanding the data. Throughout, we will describe
a weighting- and an imputation-based approach, which, as outlined below, differ mainly in
terms of the statistical working models on which they rely (Vansteelandt 2012).

Data expansion is identical for both approaches, but subsequent algorithms for data prepa-
ration differ depending on the type of working model. In the medflex package, these two
steps are implemented in the functions neWeight and neImpute. Both return an expanded
dataset to which the natural effect model can be fitted using the central function neModel
(see Figure 3). In the next two subsections, we explain both approaches and give example
code in R.

weighting- imputation-
based approach based approach
mediator model outcome model
neWeight() neImpute()

N /

natural effect model

neModel ()

v

linear hypotheses

neLht()

Figure 3: Workflow of the medflex package.
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3.2. Weighting-based approach

One way to account for missingness in the expanded data is to standardize observed outcomes
to the mediator distribution at exposure level z* rather than the observed level X (which
is set equal to). Building on Hong (2010)’s ratio-of-mediator-probability weighting method,
Lange et al. (2012) proposed to weight each observation in the expanded dataset by w; =
pi(z*)/pi(x) = Pr(M = M;|X = 2*,C;)/ Pr(M = M;| X = z,C;). Estimates for natural direct
and indirect effects can then be obtained by regressing the observed outcome on z, z* and
baseline covariates C', weighting each observation in the expanded dataset by its corresponding
ratio-of-mediator-probability weight. Intuitively, higher (lower) weights identify observations
whose mediator level is more (less) typical for different exposure levels than for the actually
observed level, thereby standardizing the observed outcomes to the mediator distribution at
exposure levels z*.2 This procedure is illustrated in Table 3.

i X, x 2 Yi(x, M;(z*)) w;

1 1 1 1 Y1 1

1 1 1 0 Y p1(0)/p1(1)
2 0 0 0 Yo 1

2 0 0 1

Yo p2(1)/p2(0)

Table 3: Schematic display of the weighting-based approach.

Valid estimation of natural effects using the weighting-based approach hinges on adequate
specification of the mediator distribution. This can be demanding when exposure or covariates
are strongly predictive of the mediator, or when the mediator is continuous, for then even
small misspecifications can have a big impact on the weights. In addition to potential weight
instability, this forms the main limitation of this approach.

Expanding the data and computing weights for the natural effect model

Using the medflex package, expanding the dataset and calculating weights can be done in a
single run, using the neWeight function. To calculate the weights, a model for the mediator
needs to be fitted. For instance, in R, the simple linear model

E(M‘X, C) =ag+ a1 X + aC,
can be fitted using the glm function:

R> medFit <- glm(negaff ~ factor(attbin) + gender + educ + age,
+ family = gaussian, data = UPBdata)

Next, this fitted object needs to be specified as the first argument in neWeight, which in turn
codes the first predictor variable in the formula argument as the exposure and then expands

3The interested reader is referred to Appendix A.1, where we give a more technical account on the link
between the weighting-based approach and the mediation formula by illustrating that the mediation formula
can be rewritten as a weighted mean outcome conditional on z, z* and C.

11
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the data along hypothetical values of this variable. It is important to note here that, for
successful data expansion, categorical exposures should be explicitly coded as factors in the
formula if they are not yet coded as such in the dataset.

R> expData <- neWeight (medFit)

Inspecting the first rows of the resulting expanded dataset shows that for each individual two
replications have been created:

R> head(expData, 4)

id attbin0 attbinl att attcat negaff initiator gender educ age UPB
11 1 1 1.001 M 0.84 myself F M 41 1
2 1 1 0 1.001 M 0.84 myself F M 41 1
3 2 0 0 -0.709 L -1.26 both M M 42 0
4 2 0 1 -0.709 L -1.26 both M M 42 0

The new variables attbin0 and attbinl correspond to hypothetical exposure values x and x*,
respectively. By convention, the index ‘0’ is used for parameters (and corresponding auxiliary
variables) indexing natural direct effects, whereas the index ‘1’ is used for parameters indexing
natural indirect effects in the natural effect model.

To shorten code, one can instead choose to directly specify the formula, family and data
arguments in neWeight. As illustrated below, this yields identical results:

R> expData <- neWeight(negaff ~ factor(attbin) + gender + educ + age,
+ data = UPBdata)
R> head(expData, 4)

id attbinO attbinl att attcat negaff initiator gender educ age UPB
1 1 1 1 1.001 M 0.84 myself F M 41 1
2 1 1 0 1.001 M 0.84 myself F M 41 1
3 2 0 0 -0.709 L -1.26 both M M 42 O
4 2 0 1 -0.709 L -1.26 both M M 42 O

By default, glm is used as internal model-fitting function. However, other model-fitting func-
tions can be specified in the FUN argument (e.g., vglm from the VGAM package (Yee and
Wild 1996)).4

Finally, the weights are stored as an attribute of the expanded dataset and can easily be
retrieved using the generic weights function, e.g., for further inspection of their empirical
distribution:

R> w <- weights (expData)
R> head(w, 10)

“In the current version of the package also vglm and vgam from the VGAM package and gam from the
gam package (Hastie 2013) are supported. When specifying model-fitting functions other than glm in the FUN
argument, one might need to specify the family argument differently. That is, in a way that is consistent with
argument specification of that specific model-fitting function.
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[1] 1.000 0.640 1.000 0.494 1.000 0.475 1.000 1.211 1.000 0.326

Fitting the natural effect model on the expanded data

After expanding the data and calculating regression weights for each of the replicates, the
natural effect model can be fitted using the neModel function. Argument specification for
this function is similar to that of the glm function, which is called internally. However, the
formula argument now must be specified in function of the variables from the expanded
dataset. The latter, in turn, needs to be specified via the expData argument. neModel
automatically extracts the regression weights from this expanded dataset and applies them
for model fitting.

Default glm standard errors tend to be downwardly biased as the uncertainty inherent to
prediction of the weights based on the estimated mediator model is not taken into account.
For this reason, neModel returns bootstrap standard errors. The number of bootstrap defaults
to 1000 and can be set in the nBoot argument:

R> neModl <- neModel(UPB ~ attbin0 + attbinl + gender + educ + age,
+ family = binomial("logit"), expData = expData)

The summary table of the resulting natural effect model object provides these bootstrap stan-
dard errors along with corresponding Wald-type z- and p-values.

R> summary (neMod1)

Natural effect model
with standard errors based on the non-parametric bootstrap
Exposure: attbin
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.74939 1.95012 -0.90 0.36968
attbinO1 0.89630 0.31983 2.80 0.00507 *x*
attbinlil 0.40170 0.11358 3.54 0.00041 *x*x*
genderM 0.19516 0.32205 0.61 0.54452
educM -0.38724 1.86410 -0.21 0.83544
educH -0.34661 1.87366 -0.18 0.85324
age -0.00611 0.01571  -0.39 0.69755

Signif. codes: 0 ‘x*xx’> 0.001 ‘*xx’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ * 1

As an alternative, robust standard errors based on the sandwich estimator (Liang and Zeger
1986) can be requested by setting se = "robust". Calculation of these standard errors is
less computer-intensive and is available for natural effect models with working models fitted
via the glm function.

13
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R> neModl <- neModel(UPB ~ attbinO + attbinl + gender + educ + age,
+ family = binomial("logit"), expData = expData,
+ se = "robust")

R> summary (neMod1)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: attbin
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.74939 0.86469 -2.02 0.04306 *
attbinO1 0.89630 0.30456 2.94 0.00325 *x*
attbinil 0.40170 0.11528 3.48 0.00049 *x*xx
genderM 0.19516 0.30643 0.64 0.52420
educM -0.38724 0.59399 -0.65 0.51445
educH -0.34661 0.61101 -0.57 0.57053

age -0.00611 0.01490 -0.41 0.68193

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ * 1

Interpreting model parameters

Exponentiating the model parameter estimates provides estimates that can be interpreted as
odds ratios. For instance, for a subject with baseline covariate levels C, altering the level
of anxious attachment from low (=0) to high (=1), while controlling negative affectivity at
levels as naturally observed for respondents with any given level of anxious attachment x,
increases the odds of displaying unwanted pursuit behaviors with a factor

—NDE  odds{Y (1, M(x)) =1|C}

ORI»OIC = OddS {Y(O, M(,f)) — ]_|C} = exp(,B]_) - eXp(08963) - 245

Altering levels of negative affectivity as observed in respondents with low anxious attach-
ment scores to levels that would have been observed if anxious attachment scores of these
respondents was high, while controlling their anxious attachment score at any given level x,
increases the odds of displaying unwanted pursuit behaviors with a factor

—NIE  odds{Y(z,M(1)) =1|C}

ORL01C = o4ds 1Y (z, M (0)) = 1]C} — OPP2) = xp(0.4017) = 149,

Wald-type confidence intervals can be obtained by applying the confint function to the
natural effect model object. The confidence level defaults to 95%, but can be changed via
the level argument. By exponentiating the intervals on the logit scale, we can obtain the
corresponding 95% confidence intervals (based on the robust standard errors) on the odds
ratio scale:

R> exp(confint (neModl) [c("attbin01", "attbinil"), ])
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95% LCL 95% UCL
attbinO1 1.35 4.45
attbinil 1.19 1.87

If standard errors are obtained via the bootstrap procedure, bootstrap confidence intervals
are returned. The default type is calculated based on a first order normal approximation
(type = "norm"), but other types of bootstrap confidence intervals (such as basic bootstrap,
bootstrap percentile and bias-corrected and accelerated confidence intervals) can be obtained
by setting the type argument to the desired type.’

3.3. Imputation-based approach

The second approach avoids reliance on a model for the mediator distribution and instead
requires fitting a working model for the outcome mean (Vansteelandt et al. 2012). By setting
x* (rather than z) equal to the observed exposure level X, unobserved nested counterfactuals
can be imputed using any appropriate mean model for the outcome. That is, since the
counterfactual mediator level M (x*) equals the observed mediator level M within the stratum
of individuals with observed exposure level X = z*, Y (z, M (2*)) equals Y (z, M). The latter
can then be imputed using fitted values E(Y|X =z, M,C) based on an appropriate model
for the outcome mean, henceforth referred to as the imputation model, with exposure level X
set to « and with mediator M and baseline covariates C' set to their observed values. Finally,
natural direct and indirect effect estimates can be obtained upon fitting a natural effect model
to the imputed dataset.® This procedure is illustrated in Table 4. For ease of implementation,
observed nested counterfactuals are imputed as well in the medflex package.”

i X; oz x* Yi(z, M;(x*))
1 1 1 1 Y3

1 1 0 1 Yi(0,M)
2 0 0 0 Ys

2 0 1 0 y

Va(1, My)

Table 4: Schematic display of the imputation-based approach. YZ(:B, M;) represent the im-
puted counterfactual outcomes.

Although circumventing stability issues inherent to weighting, the imputation-based approach
does not come without limitations. As in other imputation settings, one must pay due at-
tention to coherent model specification between the imputer’s model and the analyst’s model
(i.e., in this case, the natural effect model). To this end, Vansteelandt et al. (2012) and Loeys

5The type argument in confint corresponds to that of the boot.ci function from the boot package (Canty
and Ripley 2014), which is called internally.

5In Appendix A.2, we demonstrate the link between the mediation formula and the imputation-based
approach to natural effect models by showing that the mediation formula can be rewritten as a formulation
that prescribes estimating nested counterfactuals by calculating the mean of imputed nested counterfactuals,
conditional on z, * and C.

"Simulation studies (not shown here) have shown that this procedure does not lead to bias or loss of
efficiency.

15
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et al. (2013) advocated the use of a rich imputation model to reduce the impact of model
incongeniality in terms of misspecification bias. In this vein, the medflex package also allows
users to fit the imputation model using machine learning techniques, such as the ensemble
learner as implemented in the SuperLearner package (Polley and van der Laan 2014).8

Ezxpanding the data and imputing nested counterfactuals

Although application of the imputation-based approach is similar to that of the weighting-
based approach, it differs in some key respects. These differences are mainly captured by
differences between the functions neWeight and neImpute. Argument specification of this
function is identical to that of neWeight, unless indicated otherwise.

As for the weighted-based approach, the first step amounts to fitting a working model. Instead
of a model for the mediator, the imputation-based approach requires fitting a mean model
for the outcome. Moreover, this model should at least reflect the structure of natural effect
model (1), to avoid the aforementioned lack of a coherent model specification. That is, it
should at least contain all effects of the natural effect model with z* replaced by M. For
instance, a simple logistic regression model

logit Pr(Y = 1|1X, M,C) = v+ 11X + 2 M + v3C,
can be fitted in R using the glm function:

R> impFit <- glm(UPB ~ factor(attbin) + negaff + gender + educ + age,
+ family = binomial("logit"), data = UPBdata)

In order for neImpute to identify the predictor variables in the formula argument correctly
as either exposure, mediator(s) or baseline covariates, they need to be entered in a particular
order. That is, the first predictor variable again needs to point to the exposure and the second
to the mediator, irrespective of the use of operators (i.e., +, * and :). All other predictors are
automatically coded as baseline covariates.

This fitted object then needs to be entered as the first argument in neImpute:
R> expData <- nelImpute(impFit)
Alternatively, the formula, family and data arguments can be directly specified in neImpute:

R> expData <- nelmpute(UPB ~ factor(attbin) + negaff + gender + educ + age,
+ family = binomial("logit"), data = UPBdata)

Similar to neWeight, neImpute first expands the data along hypothetical exposure values.
Instead of calculating weights for these new observations, neImpute then imputes the nested
counterfactual outcomes by fitted values based on the imputation model. As illustrated below,
the resulting expanded dataset includes two imputed nested counterfactual outcomes for each
subject:

R> head(expData, 4)

8 An example is given in the help files of the package and can be consulted via ?neImpute.default. Only
bootstrap standard errors are available when fitting the imputation model using the SuperLearner function.
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id attbinO attbinil att attcat negaff initiator gender educ age UPB

1 1 1 1 1.001 M 0.84 myself F M 41 0.3085
2 1 0 1 1.001 M 0.84 myself F M 41 0.1442
3 2 0 0 -0.709 L -1.26 both M M 42 0.0522
4 2 1 0 -0.709 L -1.26 both M M 42 0.1272

Fitting the natural effect model on the imputed data

After expanding and imputing the data, specifying the natural effect model can be done as
for the weighting-based approach:

R> neModl <- neModel(UPB ~ attbinO + attbinl + gender + educ + age,
+ family = binomial("logit"), expData = expData,
+ se = "robust")

Again, bootstrap or robust standard errors are reported in the output of the summary function,
in order to account for the uncertainty inherent to the working model (i.e., in this case, the
imputation model):

R> summary (neMod1)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: attbin
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -1.80711 0.82933 -2.18 0.02933 *

attbinO1 0.90796 0.28959 3.14 0.00172 *x*

attbinil 0.37639 0.10055 3.74 0.00018 *x*x

genderM 0.22792 0.28698 0.79 0.42708

educM -0.21261 0.54347 -0.39 0.69565

educH -0.27774 0.55336 -0.50 0.61573

age -0.00728 0.01489 -0.49 0.62493

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ * 1

Natural direct and indirect effect odds ratio estimates and their confidence intervals can be
obtained as before.

4. Dealing with different types of variables

In the previous section, we used a dichotomized version of the continuous exposure variable
att. However, the natural effect model framework easily extends to different types of ex-
posure, mediator or outcome variables. In the following two subsections, we give a detailed

17
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outcome type

binary count continuous

mediator type neWeight neImpute neWeight neImpute neWeight nelmpute

binary v v v v v v
count v v v v v v
continuous v v v v v v
ordinal v v v
nominal e v ¥ v Ve v

Table 5: Types of variables that can be dealt with in the medflex package. Natural effect
models are currently restricted to models that can be fitted with the glm function. ‘*’ indicates
that robust standard errors are not available.

description on how to fit natural effect models with multicategorical (i.e., ordinal or nominal)
and continuous exposures. In these subsections, as well as throughout the remainder of this
paper, we will focus on the imputation-based approach when introducing new features of the
medflex package. Unless indicated otherwise, the weighting-based approach can be applied
analogously.

An overview of the types of mediators and outcomes the medflex package can currently handle,
is given in Table 5. When using the weighting-based approach, models for binary, count and
continuous mediators can be fitted using the glm function or the vglm function from the
VGAM package. Models for nominal mediators, on the other hand, can only be fitted using
the vglm function (setting family = multinomial).® Although models for ordinal mediators
are not compatible with the neWeight function, ordered factors can easily be treated as
nominal variables. Finally, the imputation-based approach can deal with virtually any type
of mediator as it does not require the specification of a mediator model.

4.1. Multicategorical exposures

Methods for dealing with multicategorical treatments or exposures, as encountered in e.g.,
multiple intervention studies, in which multiple experimental conditions are compared to a
control condition, have rarely been described within the mediation literature (although see
Hayes and Preacher 2014; Tingley et al. 2014, for some notable exceptions).

In this section, we illustrate how to expand the dataset and fit natural effect models when
using a multicategorical exposure. In this example, instead of using the binary exposure
variable attbin, we use a discretized version of anxious attachment style, named attcat
(with L indicating low, M indicating intermediate and H indicating high anxious attachment
levels).

Inspecting the first rows of the expanded dataset shows that the number of replications for
each subject again corresponds to the number of unique levels of the categorical exposure
variable. That is, the auxiliary variable z* (attcatl) is fixed to the observed exposure level,

°In the current version of the package, when using working models for weighting (either when adopting the
weighting-based approach or when fitting population-average natural effect models), robust standard errors
are only available if these working models are fitted using glm and their outcomes (i.e., either an exposure or
a mediator) follow either a normal, binomial or Poisson distribution.
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R> expData <- neImpute(UPB ~ attcat + negaff + gender + educ + age,

+

R> head(expData)

id attcatO attcatl

1

OO W
N NN - -

The summary table returns estimates for the natural direct and indirect effect log odds ratios
comparing intermediate and high anxious attachment levels to low levels of anxious attach-
ment (i.e., the reference level). The neEffdecomp function, described in section 6.2, can be
used to derive (log) odds ratios corresponding to the contrast between high and intermediate

M

= e = =

[ N

family = binomial, data = UPBdata)

att attbin negaff initiator gender educ age
myself
myself
myself
both
both
both

.001
.001
.001
.709
.709
.709

levels of anxious attachment.

1

O O O = =

.84
.84
.84
.26
.26
.26

F

=E=2=mm"

M

EEERERE

41
41
41
42
42
42

R> neMod <- neModel (UPB ~ attcat0O + attcatl + gender + educ + age,

+

R> summary (neMod)

Natural effect model

with robust standard errors based

Exposure: attcat
Mediator(s): negaff

Parameter estimates:

(Intercept) -1.

attcatOM
attcatOH
attcatlM
attcatlH
genderM
educM
educH
age

-0.
-0.
-0.

Estimate Std. Error z value Pr(>|z|)
86733 0.85171 -2.19 0.02835
.89868 0.32516 2.76 0.00571
.21911 0.37591 3.24 0.00118
32849 0.09549 3.44 0.00058
.57097 0.15517 3.68 0.00023
.20343 0.28548 0.71 0.47610
19334 0.53231 -0.36 0.71645
30124 0.54530 -0.55 0.58066
00894 0.01532 -0.58 0.55979

0 “*xx’ 0.001 “**x> 0.01 ‘%’ 0.05 °.

Signif. codes:

Overall assessment of natural effects (i.e., a joint comparison of all levels of the exposure)
cannot be based on the default summary output, but instead requires an Anova table for the
natural effect model, which can be obtained using the Anova function from the car package

0
1
0.
0
0

(Fox and Weisberg 2011):

on the sandwich estimator

family = binomial, expData

expData, se

*k
*ok

*okk
*okk

> 0.1 ¢

)

1

O O O O O o

UPB

.2842
.3593
.1329
.0501
.1202
.1618

"robust")
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R> library(car)
R> Anova(neMod)

Analysis of Deviance Table (Type II tests)

Response: UPB
Df Chisq Pr(>Chisq)

attcatO0 2 11.66 0.00293 *x*
attcatl 2 15.42 0.00045 *x*x
gender 1 0.51 0.47610
educ 2 0.35 0.83781
age 1 0.34 0.55979

Residuals 1146

Signif. codes: 0 ‘x*xx’> 0.001 ‘*xx’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ * 1

Both type-II (the default) and type-III Anova tables can be requested by specifying the desired
type via the type argument. This table includes corresponding Wald 2 tests for multivariate
hypotheses which account for the uncertainty inherent to the working model. The output
suggests that the natural direct and indirect effect odds differ significantly between the three
exposure levels.

4.2. Continuous exposures

In contrast to the mediation package, hypothesis testing for natural direct and indirect effects
along the entire support of continuous exposures is facilitated by defining causal effects on
their most natural scale. In this section, we use the continuous variable att, a standardized
version of the original anxious attachment variable.

For continuous variables, expanding the dataset along unobserved (x, x*) combinations re-
quires a slightly adapted approach than for categorical exposures. Instead of enumerating all
the levels of the exposure to construct auxiliary variables x and z* for each subject, Vanstee-
landt et al. (2012) proposed to draw specific quantiles from the conditional distribution of the
exposure given baseline covariates. By default, these hypothetical exposure levels are drawn
from a linear model for the exposure, conditional on a linear combination of all covariates
specified in the working model.!?

Both neWeight and neImpute allow to choose the number of draws to sample from this
conditional distribution via the nRep argument (which defaults to 5).

R> expData <- nelmpute(UPB ~ att + negaff + gender + educ + age,
+ family = binomial("logit"), data = UPBdata, nRep = 3)
R> head(expData)

id att0 attl attbin attcat negaff initiator gender educ age UPB
1 1 -1.64e+00 1.001 1 M 0.84 myself F M 41 0.1029

10Tf one wishes to use another model for the exposure, this default model specification can be overruled by
referring to a fitted model object in the xFit argument. Misspecification of this sampling model does not
induce bias in the estimated coefficients and standard errors of the natural effect model.
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2 1 8.02e-06 1.001 1 M 0.84 myself F M 41 0.2108
3 1 1.64e+00 1.001 1 M 0.84 myself F M 41 0.3834
4 2 -1.66e+00 -0.709 0 L -1.26 both M M 42 0.0373
5 2 -1.82e-02 -0.709 0 L -1.26 both M M 42 0.0827
6 2 1.63e+00 -0.709 0 L -1.26 both M M 42 0.1734

Specification of the natural effect model via neModel can be done as described before:

R> neModl <- neModel(UPB ~ att0 + attl + gender + educ + age,

+ family = binomial("logit"), expData = expData,
+ se = "robust")

R> summary (neMod1)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: att
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|zl)

(Intercept) -0.99234 0.81485 -1.22 0.22329
atto 0.48375 0.13130 3.68 0.00023 *x*x*
attl 0.22172 0.05714 3.88 0.00010 *x*x
genderM 0.18479 0.28656 0.64 0.51900
educM -0.33794 0.54320 -0.62 0.53386
educH -0.43704 0.55191 -0.79 0.42843
age -0.00894 0.01539 -0.58 0.56135

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ * 1

The output illustrates that defining natural effects on the (log) odds ratio scale allows to
capture each of these effects along the entire support of the exposure by a single parameter.
For instance, for a subject with baseline covariate levels C, the direct and indirect effects of
one standard deviation increase in anxious attachment level (i.e., from x to  + 1) correspond
to an increase in the odds of displaying unwanted pursuit behaviors by a factor

_—~NDE odds{Y(x 4+ 1,M(z)) = 1|C}

ORm—&-l,x\C = odds {Y(.T,M($)) _ 1|C} = exp(ﬁl) = eXp(0.48) = 1.62,

and

——NIE odds{Y (z, M(x + 1)) = 1|C}

_ — 20) = 22)=1.2
OR;H—LJ:\C odds {Y(l’,M(I’)) _ HC} exp(ﬁg) eXp(O ) 57

respectively, regardless of the initial level z. Defining natural effects on the risk difference scale
(as in the medflex package) would not have enabled to capture these by a single parameter
along the entire support of the exposure, because of induced non-additivity (an artificial
example illustrating this induced non-additivity is given in Figure 4 of Loeys et al. 2013).
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Throughout the remainder of the paper, we will continue to use the original continuous
exposure variable, att.

5. Effect modification of natural effects

5.1. Exposure-mediator interactions: relaxing the no interaction assumption

So far, the considered natural effect models reflected the assumption that the exposure and
mediator do not interact in their effect on the outcome. In particular, the natural direct effect

odds ratio
_odds{Y (1, M (x)) = 1|C}

~ odds{Y (0, M(z)) = 1|C}
was declared to be the same for each choice of mediator level M (x), and hence for each choice
of x, at which the mediator is evaluated, while, similarly, the natural indirect effect odds ratio

~odds{Y(x, M(1)) =1|C}
OR3gjc(x) = odds {Y (z, M(0)) = 1|C}

ORYf&()

was declared to be the same for each choice of exposure level x at which the outcome was
evaluated. In other words, the effects Robins and Greenland (1992) referred to as the pure
direct effect, ORll\HOD%(O), and total direct effect, ORll\Iag(l), were assumed to be equal. Like-

wise, the pure indirect effect, ORIE%E‘:C(O), and total indirect effect, ORll\I’glac(l), were assumed

to be equal. In many studies, these assumptions may not a priori be plausible.

As pointed out by VanderWeele (2013), total causal effects can be decomposed into a pure
direct effect, a pure indirect effect and a mediated interactive effect. On an additive scale, the
latter can be described as either the difference between total direct and pure direct effects or
as the difference between total indirect and pure indirect effects. Similarly, within the natural
effect model framework, the total effect odds ratio

R, . _ odds {Y(1,M(1)) = 1|C}
LOIC = 5dds {Y' (0, M(0)) = 1|C}

can be expressed as the product of the pure direct and pure indirect effect odds ratios and
the mediated interaction odds ratio

ORNDE (1) ORNIE (1)
ORYGE(0) - ORYGo(0) - Gonpi o = ORIGE(O) - ORE(0) - ot o
ORLOIC(O) OR1,0|C(0)

Rather than reflecting the difference between total and pure direct or indirect effects, the
mediated interaction odds ratio corresponds to the ratio of total and pure direct or indirect
effect odds ratios.

In a logistic natural effect model, testing for exposure-mediator interaction amounts to testing
whether the mediated interaction odds ratio differs from 1, or equivalently, on the scale of
the linear predictor, whether the corresponding log odds ratio, as captured by (4 in natural
effect model

logit Pr{Y (z, M(x*)) = 1|C} = B + Bz + Bsa” + By - 2* + B4C, (2)
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differs from 0. When including this interaction term in the outcome model, 8] and 3} will
index the pure direct and indirect effect log odds ratios, respectively.

When applying the imputation-based approach, the working model needs to at least reflect
the structure of the final natural effect model (as has been pointed out in Section 3.3). This
requires the user to first (re)fit the imputation model accordingly. For instance, the minimal
imputation model for natural effect model (2) would be the logistic regression model

logit Pr(Y = 1|1 X, M,C) = v + % X + M +~+4X - M +44C.

The output of the corresponding natural effect model object suggests there is no evidence for
mediated interaction at the 5% significance level.

R> expData <- neImpute(UPB ~ att * negaff + gender + educ + age,

+ family = binomial("logit"), data = UPBdata)
R> neMod2 <- neModel(UPB ~ attO * attl + gender + educ + age,

+ family = binomial("logit"), expData = expData,
+ se = "robust")

R> summary (neMod2)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: att
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.9040 0.8036 -1.12 0.2606
atto 0.4790 0.1326 3.61 0.0003 *x*x*
attl 0.1824 0.0599 3.05 0.0023 *x*
genderM 0.1889 0.2873 0.66 0.5108
educM -0.4200 0.5409 -0.78 0.4375
educH -0.5067 0.5497 -0.92 0.3566
age -0.0110 0.0152 -0.72 0.4693
attO:attl 0.0788 0.0504 1.56  0.1177

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ * 1

5.2. Effect modification by baseline covariates

One might additionally wish to determine whether direct or indirect effects generalize across
different strata of the population and across different conditions.

In our example, researchers might for instance investigate whether the extent to which the
effect of anxious attachment level on engaging in UPBs is mediated through the experience of
negative affectivity differs between men and women or between people with different education
levels (Muller, Judd, and Yzerbyt 2005; Preacher, Rucker, and Hayes 2007). In the scope
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of natural effect models, this moderation mediation hypothesis can be probed by allowing
the conditional indirect effect, as indexed by (2 in model (1), to depend on gender, C, as
expressed in model (3) below

logit Pr {Y (2, M(2*)) = 1/C} = B + Bla + B4a™ + Bja* - C1y + BIC, (3)

in which testing whether 34 = 0 corresponds to testing for moderated mediation by gender.

R> impData <- nelmpute(UPB ~ (att + negaff) * gender + educ + age,

+ family = binomial("logit"), data = UPBdata)
R> neMod3 <- neModel(UPB ~ att0O + attl * gender + educ + age,

+ family = binomial("logit"), expData = impData,
+ se = "robust")

R> summary (neMod3)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: att
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|zl|)

(Intercept) -1.00323 0.81391 -1.23 0.21772

atto 0.48405 0.13080 3.70 0.00021 x*x*x*

attl 0.21077 0.07683 2.74 0.00608 x*x*

genderM 0.17245 0.28897 0.60 0.55066

educM -0.34572 0.54383 -0.64 0.52496

educH -0.44891 0.55460 -0.81 0.41827

age -0.00833 0.01547 -0.54 0.59050
attl:genderM 0.03583 0.12195 0.29 0.76894

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ * 1

The output suggests that the natural indirect effect does not differ significantly between men
and women.

In a similar way, researchers can probe effect modification by education level. Suppose, for
instance, that one wishes to test whether education level moderates both the direct and
indirect effect. This can be done by fitting the natural effect model

logit Pr {Y(x, M(a:*)) = 1’0} = 66 + B’f.%’ + ,351'* + 6-}:1‘ . 0271 + ,321’ . 0272
+ B5a” - Cog + ™ - Cop + B7C, (4

with C 1 and (32 dummy variables encoding the three education levels. Effect modification
of the natural indirect (direct) effect by education level in model (4) is then captured by 3%

and 8% (B3 and f)).
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R> impData <- neImpute(UPB ~ (att + negaff) * educ + gender + age,

+ family = binomial ("logit"), data = UPBdata)
R> neMod4 <- neModel(UPB ~ (att0 + attl) * educ + gender + age,

+ family = binomial("logit"), expData = impData,
+ se = "robust")

Testing for moderation by a multicategorical variable calls for a multivariate test, which can
again be obtained by requesting an Anova table for the natural effect model.

6. Tools for deriving and visualizing causal effect estimates

In this section, we highlight tools that can aid in deriving and visualizing specific causal effect
estimates of interest. These tools might prove to be useful for gaining insight, especially for
more complex models including interaction terms involving natural effect parameters.

6.1. Linear combinations of parameter estimates

Although effect estimates for e.g., the total causal effect can easily be derived from the summary
table of a natural effect model, its standard error and confidence interval cannot. To this end,
the function neLht, which exploits the functionality of the glht function from the multcomp
package (Hothorn, Bretz, and Westfall 2008) can be of use. This function enables the calcu-
lation of linear combinations of parameter estimates as well as their corresponding standard
errors and confidence intervals based on the bootstrap or robust variance-covariance matrix
of the natural effect model.

For instance, in model (2 ) the total direct and indirect effect can be expressed on the log
odds scale as ﬂl + 53 and 62 + 63, respectively. Similarly, the total causal effect log odds ratio
is captured by 51 + ,6’2 + 63 As the argument for the linear function, linfct, needs to be
specified in terms of one or more linear hypotheses, these effects can be specified as illustrated
below:

R> 1ht <- neLht(neMod2, linfct = c("att0 + attO:attl = 0",
+ "attl + attO:attl = 0",
+ "attO + attl + attO:attl = 0"))

The corresponding odds ratios and their confidence intervals can be requested by exponenti-
ating the coefficients and confidence intervals of the resulting object:

R> exp(cbind(coef (1ht), confint(lht)))

95% LCL 95% UCL
attO + attO:attl 1.75 1.33 2.29
attl + attO:attl 1.30 1.14 1.47
att0 + attl + attO:attl 2.10 1.62 2.72

Separate univariate tests for linear hypothesis objects can be requested using the summary
function:
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R> summary (1ht)

Linear hypotheses for natural effect models
with standard errors based on the sandwich estimator

Estimate Std. Error z value Pr(>|z|)

att0 + attO:attil 0.5578 0.1376 4.05 b5.1e-05 *xx*
attl + attO:attl 0.2613 0.0645 4.05 b5.2e-05 *xx
att0 + attl + attO:attl 0.7403 0.1330 5.66 2.6e-08 *x*x*

Signif. codes: 0 ‘“x*xx’> 0.001 ‘*xx’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ * 1
(Univariate p-values reported)

In contrast to the summary table for glht objects, which yields p-values that are adjusted
for multiple testing, tests returned by the summary function applied to neLht objects report
unadjusted univariate tests. Adjusted tests can be obtained by setting test = adjusted()
(for more details consult the help page of the adjusted () function from the multcomp package
(Hothorn et al. 2008)).

6.2. Effect decomposition

If one is only interested in the natural effect parameters, the convenience function neEffdecomp
can be used instead of neLht. This function automatically retains the natural effect estimates
and generates a linear hypothesis object that reflects the most suitable effect decomposition:

R> effdecomp <- neEffdecomp (neMod2)
R> summary (effdecomp)

Effect decomposition on the scale of the linear predictor
with standard errors based on the sandwich estimator
conditional on: gender, educ, age

with xx = 0, x =1

Estimate Std. Error z value Pr(>|z|)

pure direct effect 0.4790 0.1326 3.61 0.0003 *x*xx
total direct effect 0.5578 0.1376 4.05 b5.1e-05 *xx*
pure indirect effect 0.1824 0.0599 3.05 0.0023 *x*
total indirect effect 0.2613 0.0645 4.05 b5.2e-05 *xx*
total effect 0.7403 0.1330 5.56 2.6e-08 *xx

Signif. codes: 0 ‘x*xx’> 0.001 ‘xx’ 0.01 ‘*’ 0.056 ‘.’ 0.1 ¢ * 1
(Univariate p-values reported)

By default, reference levels for the exposure, x and x*, are chosen to be 1 and 0, respectively.
If one wishes to evaluate causal effects at different reference levels (e.g., if the natural effect
model allows for mediated interaction or if it includes quadratic or higher-order polynomial
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terms for the exposure), these can be specified as a vector of the form c(x*,x) via the xRef
argument.

The output indicates that, for a subject with baseline covariate levels C, a standard deviation
increase from the average level of anxious attachment (=0), increases the odds of displaying
unwanted pursuit behaviors with a factor

——=NDE _ odds{Y(1,M(0)) =1|C}
~ odds {Y (0, M(0)) = 1|C}

— exp(f]) = 1.61
when controlling negative affectivity at levels as naturally observed for respondents with
average anxious attachment levels, or with a factor

—NDE . odds{Y(1,M(1)) = 1|C}
ORv0el) = Cads (70, M (1)) = 1/C}

= exp(B} + B4) = 1.75

when controlling negative affectivity at levels as naturally observed for respondents with
anxious attachment levels one standard deviation above the average level.

On the other hand, altering levels of negative affectivity as observed in respondents with
average levels of anxious attachment to levels that would have been observed if anxious
attachment scores of these respondents increased with a standard deviation, increases the
odds of displaying unwanted pursuit behaviors with a factor

——NIE ~odds{Y(0,M(1)) = 1|C}
~ odds{Y (0, M(0)) = 1|C}

= exp(ﬁé) =1.20

when controlling their anxious attachment level at the average, or with a factor

——NIE odds{Y (1,M(1)) = 1|C}

ORvoc() = Cqas v, a0y = 1oy~ P +85) = 1.30

when controlling their anxious attachment level one standard deviation above the average.

The total causal effect odds ratio can be expressed as the product of the pure direct and
indirect effect odds ratios and the mediated interaction odds ratio: a standard deviation
increase from the average level of anxious attachment approximately doubles the odds of
displaying unwanted pursuit behaviors.

odds{Y(1,M(1)) = 1|C}
odds {Y (0, M(0)) = 1|C}

6]5\{1,0|c = = exp(ﬁj + ﬁé + 5&) = 2.10.

If the model includes terms reflecting effect modification by baseline covariates (e.g., as in
model (3)), effect decomposition is by default evaluated at covariate levels that correspond
to 0 for continuous covariates and to the reference level for categorical covariates coded as
factors. However, for this type of models, it might often be insightful to evaluate natural
effect components at different covariate levels than the default levels. This can be done via
the covLev argument, which requires a vector including valid levels for modifier covariates
specified in the natural effect model. An example of effect decomposition for women (gender
= "F", the default covariate level) and men (gender = "M") in model (3) is given in the R
code below:

R> neEffdecomp (neMod3)

27
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Effect decomposition on the scale of the linear predictor
conditional on: gender = F, educ, age
with x¥ = 0, x = 1

Estimate
natural direct effect 0.484
natural indirect effect 0.211
total effect 0.695

R> neEffdecomp (neMod3, covLev = c(gender = "M"))

Effect decomposition on the scale of the linear predictor
conditional on: gender = M, educ, age
with xx = 0, x = 1

Estimate
natural direct effect 0.484
natural indirect effect 0.247
total effect 0.731

6.3. Global hypothesis tests

Global hypothesis tests considering all linear hypothesis simultaneously can be requested
by specifying test = Chisqtest(). For instance, in model (4), instead of using the Anova
function, one could also test for moderated mediation by means of a global hypothesis test
involving the relevant parameters 8z and S;:

R> modmed <- neLht(neMod4, linfct = c("attl:educM = 0", "attl:educH = 0"))
R> summary (modmed, test = Chisqtest())

Global linear hypothesis test for natural effect models

with standard errors based on the sandwich estimator
Chisq DF Pr(>Chisq)

1 3.8 2 0.149

6.4. Visualizing effect estimates and their uncertainty

Finally, the generic plot function can be applied to linear hypothesis objects to visualize
(linear combinations of) effect estimates and their uncertainty by means of confidence interval
plots. To obtain estimates and confidence intervals on the odds ratio scale, one can specify
transf = exp in order to exponentiate the original parameter estimates (on the log odds
ratio scale).



Johan Steen, Tom Loeys, Beatrijs Moerkerke, Stijn Vansteelandt 29

Applying the plot function to a natural effect model object automatically retains the causal
effect estimates of interest, generates a linear hypothesis object using neEffdecomp and then
plots its corresponding estimates and confidence intervals, as shown in Figure 4.

R> par(mfrow = c(1, 2))
R> plot(neMod2, xlab = "log odds ratio")
R> plot(neMod2, xlab = "odds ratio", transf = exp)

95% sandwich Cls

pure direct effect
total direct effect —

pure indirect effect
total indirect effect —

total effect —

log odds ratio

95% sandwich Cls

pure direct effect
total direct effect —

pure indirect effect
total indirect effect —

total effect —

10 15 20 25

odds ratio

Figure 4: Effect decomposition on the log odds ratio and odds ratio scales.

The default exposure reference and covariate levels for these plots are the same as for the
neEffdecomp function, but can again be altered via the corresponding arguments xRef and
covLev.

7. Population-average natural effects

In all previous sections, we defined natural effects as conditional or stratum-specific effects
(i.e., conditional on baseline covariates). However, the medflex package also allows to estimate
population-average natural effects. As demonstrated in Appendix A.3 and A.4, rewriting
the mediation formula reveals that estimation of these population-average effects requires
weighting by the reciprocal of the conditional exposure distribution in order to adjust for
confounding (also see Albert 2012; Vansteelandt 2012).

As a consequence, a model for the exposure distribution needs to be fitted and specified as
an additional working model, e.g.,

R> expFit <- glm(att ~ gender + educ + age, data = UPBdata)

Since specifying population-average natural effect models using the neModel is equivalent for
the weighting- and imputation-based approaches, in the remainder of this section, we demon-
strate how to proceed when adhering to the imputation-based approach. Moreover, when
estimating population-average natural effects, incoherence between imputation and natural
effect models is less of a concern as the latter does not require modeling the relation be-
tween outcome and covariates. The (first) working model can again be fitted using the same
commands as before:

R> impData <- nelmpute(UPB ~ att + negaff + gender + educ + age,
+ family = binomial("logit"), data = UPBdata)
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Each observation in the expanded dataset to which the marginal natural effect model indexing
the population-average natural direct and indirect effects

logit Pr{Y (z, M (z*)) = 1} = 6y + 612 + 622" (5)

is fitted, needs to be weighted by the reciprocal of the exposure probability density, Pr(X|C),
evaluated at the observed exposure. The fitted model object that is used to calculate regres-
sion weights needs to be specified in the xFit argument of the neModel function:

R> neMod5 <- neModel(UPB ~ att0O + attl, family = binomial("logit"),
+ expData = impData, xFit = expFit, se = "robust")
R> summary (neMod5)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: att
Mediator(s): negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6451 0.1471 -11.18 < 2e-16 **x*
atto 0.4756 0.1298 3.66 0.00025 *x*x*
attl 0.2439 0.0711 3.43 0.00061 **x*

Signif. codes: 0 ‘“x*xx’> 0.001 ‘*xx’ 0.01 ‘*’ 0.056 “.” 0.1 ¢ * 1

Both the marginal natural direct and indirect effect odds ratios again seem to be significantly
different from 1: increasing the anxious attachment level from average to one standard error
above average, while keeping negative affectivity fixed at levels that would naturally have
been reported had anxious attachment level been fixed at any given level z*, increases the
odds of displaying unwanted pursuit behaviors with a factor

——NDE _ odds{Y (1, M(z*)) =1} j ) —
ORI,O = odds {Y(O,M(JI*)) — 1} = exp(el) =1.61.

A similar interpretation can again be made for the natural indirect effect.

8. Multiple mediators: a joint mediator approach

In many settings multiple mediators may be of interest. In our example, one could argue
that being anxiously attached to one’s partner makes respondents more hesitant to end their
relationship and that, in turn, not having initiated the break-up causes them to engage in
unwanted pursuit behaviors more often. In this sense, initiator status (initiator: either
"both", "ex-partner", or "myself") can also be considered as a mediator, which we denote
L.

If hypothesized mediators do not affect one another, one can fit separate natural effect mod-
els (each with a different working model involving only one of the mediators) to assess the
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initiator status (L) negative affectivity (M

anxious attachment ( nwanted pursuit behavior (V)

\/

gender, education, age (C)
Figure 5: Causal diagram reflecting exposure-induced confounding.

mediated effects through each of the mediators one at a time. That is, if the aforementioned
ignorability assumptions (A1-A4) hold with respect to the whole set of mediators, natural
indirect effects, as defined as causal pathways through single mediators, are identified since
assumptions (A1-A4) then imply that the given mediators are independent (Imai and Ya-
mamoto 2013; VanderWeele and Vansteelandt 2013) given exposure and baseline covariates.
Moreover, Lange et al. (2014) recently proposed a regression-based approach for testing in-
terdependence between mediators and demonstrated how independent intermediate pathways
can be assessed in a single natural effect model using the weighting-based approach.

Often, however, mediators are interdependent and sometimes can be thought of as being
linked in a sequential causal chain. For instance, not having initiated the break-up could have
made respondents more prone to feeling sad, jealous, angry, frustrated or hurt, as reflected in
the causal diagram depicted in Figure 5. Under this diagram, initiator status confounds the
relation between the mediator and outcome (given that negative affectivity is the mediator of
interest), while at the same time being influenced by the exposure, hence violating identifica-
tion assumption (A4). As a consequence, the natural indirect effect via negative affectivity
can no longer identified using the mediation formula under the causal diagram depicted in
Figure 5.

If indications of exposure-induced confounding or mediators affecting one another are present,
an alternative might be to consider these multiple mediators jointly and to redefine natural
indirect and direct effects by decomposing the total causal effect into an effect mediated
through all given mediators simultaneously and an effect not mediated by any of these me-
diators, respectively (VanderWeele and Vansteelandt 2013; VanderWeele, Vansteelandt, and
Robins 2014). Although this type of effect decomposition might not target the initial me-
diation hypothesis, it may, in certain cases, still shed some light on the underlying causal
mechanisms. In particular, it can be interesting to assess if the two mediators in combination
leads to a null direct effect as this signals that all important components of the causal chain
from exposure to outcome have been identified.

For example, in the natural effect model framework, exp(57*) in model
logit Pr{Y (z, L(z*), M (z*)) = 1|C} = 5" + Bz + 857 x" + 55°C, (6)
captures the (newly-defined) natural direct effect odds ratio

odds {Y (1, L(z*), M(z*)) = 1|C}

ORNDE _
LOIC ™ 6dds {Y (0, L(x*), M (z*)) = 1|C}’
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whereas exp(33*) captures the natural indirect effect odds ratio

ORNE. _ 0dds {Y(w, L(1), M(1)) = 1|C}
LOIC ™ odds {Y (z, L(0), M(0)) = 1|C}

through L and M jointly.

Fitting this natural effect model, however, requires both mediators to be taken into account
in the working model(s). When applying the weighting-based approach, dealing with multiple
mediators entails fitting a model for each of the mediators separately to calculate ratio-of-
mediator probability weights, as in Lange et al. (2014). The imputation-based approach,
on the other hand, only requires one working model for the outcome (i.e., an imputation
model). For this reason, estimation of joint mediated effects is implemented only for the
imputation-based approach in the current version of the medflex package.

Hence, after expanding the data and imputing counterfactual outcomes by fitted values based
on an imputation model conditional on both L and M, for instance the logistic model

logit Pr(Y = 1|X, L, M,C) = 15" + 7" X + 15" L + 73" M + 7" L - M + ~§*C,

which also allows for a mediator-mediator interaction, one can fit natural effect model (6) to
the imputed dataset. In R, these steps can be implemented using the following code:

R> impData <- neImpute(UPB ~ att + initiator * negaff + gender + educ + age,

+ family = binomial("logit"), nMed = 2, data = UPBdata)
R> neMod6 <- neModel (UPB ~ att0O + attl + gender + educ + age,

+ family = binomial("logit"), expData = impData,

+ se = "robust")

R> summary (neMod6)

Natural effect model
with robust standard errors based on the sandwich estimator
Exposure: att
Mediator(s): initiator, negaff
Parameter estimates:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.03066 0.82004 -1.26 0.20881
atto 0.42728 0.12484 3.42 0.00062 *xx*xx
attl 0.26958 0.06467 4.17 3.1e-05 *xx
genderM 0.15883 0.28656 0.55 0.57940
educM -0.29465 0.54294 -0.54 0.58734
educH -0.40742 0.55354 -0.74 0.46171
age -0.00838 0.01545 -0.54 0.58758

Signif. codes: 0 ‘x*xx’> 0.001 ‘*xx’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ * 1

As illustrated in the R code, the number of mediators to be considered jointly should be set
via the nMed argument in the neImpute function. If nMed = 2, not only the second predictor
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variable, but the two predictor variables declared after the exposure variable are internally
coded as mediators. Correct specification of the (number of) mediators can easily be checked
in the summary output of the natural effect model object, which mentions the name of the
exposure and all mediators.

Although we have hypothesized that initiator status affects the level of experienced negative
affectivity, this joint mediator approach does not necessarily require knowing the ordering
of the mediators. VanderWeele and Vansteelandt (2013) and VanderWeele et al. (2014) de-
scribed how additional insight into the causal mechanisms can be gained when the ordering
is (assumed to be) known. These authors advocated a sequential approach which enables
further effect decomposition of the total causal effect into multiple path-specific effects (Avin
et al. 2005). Such sequential approach can easily be embedded in the natural effect model
framework and is planned to be implemented in an upcoming version of the medflex package.

9. Concluding remarks

In this paper, we provided some theoretical background on the counterfactual framework, in
particular on mediation analysis and natural direct and indirect effects, and described the
functionalities of the R package medflex.

This package combines some important strengths of other (software) applications for me-
diation analysis that build on the mediation formula, while accommodating some of their
respective weaknesses. The major appeal of this package is its flexibility in dealing with non-
linear parametric models and the functionalities it offers for hypothesis testing by resorting
to natural effect models, which directly parameterize the target causal estimands. Further-
more, for the most common parametric models, robust standard errors can be obtained, so
the computer-intensive bootstrap can be avoided. A limitation of this package is that, at
present, it does not offer a framework for sensitivity analysis for possible violations of the
identification assumptions of the causal estimands.

As mentioned in the previous section, additional functionalities for dealing with exposure-
induced confounding and multiple mediators are intended to be added to the package in the
future, as well as extensions for survival models. Future developments within the natural
effect model framework will be added in updates of the package.

33
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A. Link between estimators and the mediation formula

A.1. Weighting-based estimator (Lange et al. 2012)

Fitting a stratum-specific natural effect model using the weighting-based approach requires a
model for the mediator distribution Pr(M|X, C) as a working model:

E{Y (2, M(2*))|C} =) E(Y|X =2,M =m,C)Pr(M =m|X =z*,C)

=33y Pr(Y = y|X = 2, M = m,C) Pr(M = m|X = 2*,C)

Y=y M=m|X=2z/C) B .
—ZZy PrM X =2.0) Pr(M =m|X =2*,C)

Pr(M =m|X =2*,C)
Pr(M =m|X ==z,C)

—e[v. M x=ac]

A.2. Imputation-based estimator (Vansteelandt et al. 2012)

Fitting a stratum-specific natural effect model using the imputation-based approach requires
an imputation model for the mean outcome E(Y|X, M, C) as a working model:

E{Y(z,M(z"))|C} = Z EY|X =2,M =m,C)Pr(M =m|X =2z%,C)

—E[E(Y\X:x,M,C’)‘X:x*,C} (7)

A.3. Weighted weighting-based estimator (Lange et al. 2012)

Fitting a marginal or population-averaged natural effect model requires a propensity score
model for the exposure Pr(X|C) as additional working model:

E{Y (2, M(z*))} =Y ) E(Y|X =2,M =m,C = c)Pr(M =m|X =2*,C = ¢) Pr(C = ¢)

=S NNy Py =y X =e, M=m,C=c)
y ¢ m

. Pr(C=c¢,X =2
Pr(M =m|X ==z ’C_C>Pr((X—a?\C—c))

_ZZZQ Y=y M=mlX=xzC=c)
PrM m|X =z,C =c)

Pr(C=c¢,X =2x)

Pr(X =z|C =¢)

-Pr(M =m|X =z%,C =¢)

—y,M m,C =c¢,X =x)Pr(M =m|X =2*,C =¢)
_ZZZ?/ Pr(X =z|C =¢) Pr(M =m|X =z,C =c¢)
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=y M=m,C=cX ==z

_Zzzy y( :x\C:c)| )Pr(X:x)

Pr(M =m|X =2*,C =¢)

" Pr(M =m|X =x,C =¢)
Y  Pr(M|X =z*,0)
[Pr(X =z|C) Pr(M|X =z,C)
YI(X =z) Pr(M|X =2%,C)
[Pr(X =z|C) Pr(M|X :a:,C')]

=E

‘ X —m} Pr(X =ux)

E

A.4. Weighted imputation-based estimator (related to Albert 2012)

E{Y(z,M(z"))} = ZZ EY| X =2,M=m,C=c)Pr(M =m|X =z",C =c¢)Pr(C =¢)

c m

B Y|X—xM m,C = c) B B o
ZZ X =27 C = 0) Pr(M =m,C=c¢, X =2%)

_ Y|X—xM m,C = ¢) B B o, L,
ZZ X =z*|C =¢) Pr(M =m,C = ¢|X = 2") Pr(X = z7)

E(Y|X = 2, M,C)
Pr(X = z*|C)

- E(Y‘X = x,M,C) _
=€ My ey 1 =)

'X—x} Pr(X = a*)
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