
Computing min P test - a gene region-level testing

procedure - with the minPtest function using the

example of simulated SNP data

Stefanie Hieke

May 11, 2011

1 Introduction

This vignette documents the use of the minPtest function to compute the min
P test, a gene region-level testing procedure using simulated single nucleotide
polymorphisms (SNP) data with known structure, generated by the generateSNPs
function.

2 The minPtest package

The package minPtest was written to provide a gene region-level summary for
each candidate gene using the min P test for genetic case-control studies. The min
P test is a permutation-based method that can be based on different univariate
tests per SNPs. The package brings together three different kinds of tests that
are scattered over several R packages. Calculations of p-values from permutation-
based methods can be time-consuming for large data sets, therefore, the minPtest
package integrates two different parallel computing packages to improve compu-
tation speed by parallel computing. The use of minPtest is illustrated through
two simulated data sets generated by the function generateSNPs of the minPtest

package.

3 Generation of the simulated data set

To illustrate the computation of the gene region-level summary, min P test, for
different scenarios and settings, we generate SNP data with the generateSNPs

1

function, which is included in the minPtest package. We start by loading the
minPtest package.

> library(minPtest)

generateSNPs simulates a matrix consisting of n subjects and snp.no SNPs,
two automatically generated covariates and matchset numbers. Note that n has
to be specified as an argument in the generateSNPs function and the number
of SNPs snp.no is derived from the specified arguments gene.no, block.no and
block.size in the generateSNPs function. SNPs with genotypes coded by 0, 1
and 2 are simulated using the probability for neighborhood SNPs within a block
p.same, the probability for neighborhood blocks within a gene p.different and
the allele frequency p.minor. p.same can either be a numeric value, see example
3.1 or a vector of length block.size where the first item is fixed as the value
which would be selected for the probability for neighborhood blocks. In the latter
case p.different is ignored. The remaining items in the p.same vector specify
the probability for each neighborhood SNP within the blocks, see example 3.2.
The response is determined by a logistic regression model given the SNPs and
the two covariates. The parameters (effect size) of the SNPs for the generation of
case-control status are specified in the SNPtoBETA matrix, see 3.1 and 3.2.

3.1 First simulated data set scenario

We simulated a (rather) small genetic case-control data set. The example below
illustrates the generation of a data set consisting of 100 observations, 200 SNPs
with genotypes coded by 0, 1 and 2, two clinical covariates (continuous and binary)
for adjustment or matching and matchset numbers. The SNPs are located on 5
genes with 4 blocks per gene and block size 10, i.e. 10 SNPs per block yielding
40 SNPs per gene. First we will define the SNPtoBETA matrix in order to specify
the SNPs and their effect size (offsets) which are explanatory for the response
(case-control status). In this scenario, we select two SNPs located on G1 in two
blocks with allele frequency 0.1 and moderate effect size, one SNPs located on G2
in one block with allele frequency 0.4 and high effect size, two SNPs located on
G4 in two blocks with allele frequency 0.4 and moderate effect size and one SNP
located on G5 in one block with allele frequency 0.1 and moderate effect size.

> SNP <- c(6,26,54,135,156,186)

> BETA <- c(0.9,0.7,1.5,0.5,0.6,0.8)

> SNPtoBETA <- matrix(c(SNP,BETA),ncol=2,nrow=6)

> colnames(SNPtoBETA) <- c("SNP.item","SNP.beta")

2

We now simulate the data set with equal neighborhood probability (0.9) for
each SNP within each block and equal probabilities for neighborhood blocks (0.75)
within a gene. We set a seed for reproducibility.

> set.seed(1007)

> sim.ex1 <- generateSNPs(n=100,gene.no=5,block.no=4,block.size=10,

p.same=0.9,p.different=0.75,

p.minor=c(0.1,0.4,0.1,0.4),

n.sample=80,SNPtoBETA=SNPtoBETA)

One output of this function is the simulated data matrix sim.data with one
row for each observation containing response values, simulated SNP values (coded
by 0, 1 and 2.), a continuous and a binary covariate and a matchset number. The
following command returns an excerpt of the data set and should not be called if
the data set is to large.

> # head(sim.ex1$sim.data)

The function also returns a list of outputs which can be directly used as input
for the minPtest function, see below, y a numeric response vector coded with 0
(coding for controls) and 1 (coding for cases), x a numeric matrix containing the
simulated SNP data with genotypes coded by 0, 1 and 2, SNPtoGene a matrix
comprising the SNP names and the names of the genes on which the SNPs are
located, cov a matrix containing a continuous and a binary clinical covariate and
matchset a numeric vector containing the matching numbers. The print function
displays brief information on the simulated data set and the number of SNPs.

> sim.ex1

Call: generateSNPs(n = 100, gene.no = 5, block.no = 4,

block.size = 10, p.same = 0.9, p.different = 0.75,

p.minor = c(0.1, 0.4, 0.1, 0.4), n.sample = 80, SNPtoBETA = SNPtoBETA)

Simulated data set containing 200 SNPs, two matching covariates and

a matchset column (containing the matchset numbers).

Output y, x, SNPtoGene, cov and matchset can directly be used

for the minPtest function.

3.2 Second simulated data set scenario

The example below uses a data set as in 3.1 except for the probability for neigh-
borhood SNPs within the blocks, the SNP positions and their effect sizes for the
generation of the case-control status. We will now consider a break within the first

3

block in each gene. Therefore, we change the probability for neighborhood SNPs
of SNP-position 6 from 0.9 to 0.5 and retain equal neighborhood probability for
each block as in 3.1, through fixing the value 0.75 as in 3.1 at the first entry of the
p.same vector and retaining the default value NULL of p.different. Furthermore,
we have to define the SNPtoBETA matrix in order to specify the SNPs and their
effect size (offsets) which are explanatory for the response (case-control status). In
this scenario, we select two SNPs located on G1 in two blocks with allele frequency
0.1 or 0.4 and high effect size, one SNPs located on G3 in one block with allele
frequency 0.4 and moderate effect size, two SNPs located on G4 in two blocks with
allele frequency 0.1 or 0.4, respectively, and moderate effect size and two SNPs
located on G5 in two blocks with allele frequency 0.1 and moderate effect size.

> p.same <- rep(c(0.75,rep(0.9,9)),4)

> p.same[6] <- 0.5

> SNP <- c(7,15,96,145,157,164,185)

> BETA <- c(1.5,1.0,0.5,0.8,0.4,0.6,0.8)

> SNPtoBETA <- matrix(c(SNP,BETA),ncol=2,nrow=7)

> colnames(SNPtoBETA) <- c("SNP.item","SNP.beta")

> set.seed(2006)

> sim.ex2 <- generateSNPs(n=100,gene.no=5,block.no=4,block.size=10,

p.same=p.same,p.minor=c(0.1,0.4,0.1,0.4),

n.sample=80,SNPtoBETA=SNPtoBETA)

This function returns a similar list as described in 3.1. The following command
returns an excerpt of the data set and should not be called if the data set is to
large.

> # head(sim.ex2$sim.data)

4 Candidate gene analysis using min P test

The main focus of the minPtest package is the computation of the permutation
based p-values for candidate genes using the min P test. The gene region-level
summary, as the min P test, assesses the statistical significance of the smallest
p-trend within each gene region comparing cases and controls. Inference is based
on the permutation distribution of the minimum of the ordered p-values from the
marginal test of each SNP. The permutation method can be based on different
univariate tests per SNP, and, the minPtest function brings together three differ-
ent kinds of tests to compute such p-values.
In order to illustrate the computation of the gene region-level testing procedure

4

using unconditional and conditional logistic regression, respectively, to compute
marginal and permuted trend p-values, we use the simulated data sets of 3.1 and
3.2. The help page of the minPtest function contains an example to compute
the gene region-level summary using an Cochran Armitage Trend Test is given
at the help page of the minPtest function. As the computation of p-values from
permutation-based methods can be time-consuming, we use the multicore and
the snowfall package, integrated in the minPtest package, to obtain acceleration
by parallel computing in the examples 4.1 or 4.2. An example for a sequential
application is given on the help page of the minPtest function.

4.1 Computing the min P test using unconditional logistic

regression and multicore

We start by accessing the simulated data set of 3.1.
A short explanation might be useful before calling the minPtest function. The
minPtest function automatically selects the most appropriate test for the study
design at hand. Trend p-values are computed using Cochran Armitage Trend
Test including only a response vector, a SNP matrix and a matrix comprising
the SNP names and the names of the genes on which the SNPs are located, see
the help page of the minPtest function. In the example below, additional to the
response vector, the SNP matrix and the matrix comprising SNP and names of
the gene generated in sim.ex1 (3.1), we specify a formula to compute trend p-
values using unconditional logistic regression. Note that, no matchset vector is
needed. There are two possibilities to specify the formula. First, if no covariates
are used for adjustment, the formula has to be written as y∼1 without specifying
the covariate matrix cov. Second, if covariates other than SNPs are used for
adjustment, the formula has to be written as the response vector y on the left
of a ∼ operator and the clinical covariates on the right. In addition, a covariate
matrix has to be specified. In the example below we use a continuous and a
binary covariate simulated in 3.1 for adjustment. We run the call of the minPtest
function on a multicore computer with 4 cores, in order to obtain acceleration by
parallel computing, by setting option multicore=4 requiring the installation of the
multicore package, as the minPtest call can take some time. Note, multicore
is currently not available on Microsoft Windows. An alternative to multicore

for Microsoft Windows system users is the snowfall package, see 4.2. We set a
seed to generate seed1 of length permutation to guarantee reproducibility of the
results even if running in parallel and for different numbers of parallel processes.

5

> set.seed(10)

> seed1 <- sample(1:1e7,size=1000)

> minPtest.object1 <- minPtest(y=sim.ex1$y, x=sim.ex1$x,

SNPtoGene=sim.ex1$SNPtoGene,

formula=y~cov.continuous+cov.binary,

cov=sim.ex1$cov, multicore=4, seed=seed1)

> minPtest.object1

Used method: unconditional logistic regression (glm) for 100 subjects

Call: minPtest(y = sim.ex1$y, x = sim.ex1$x,

SNPtoGene = sim.ex1$SNPtoGene, formula = y ~ cov.continuous + cov.binary,

cov = sim.ex1$cov, seed = seed1, multicore = 4)

Number of genes: 5

Number of SNPs: 200

Number of missings in the SNP matrix: 0

Number of permutations: 1000

Above, you can see the display returned by the print function. It prints the
method which was used for the computation of the marginal and permuted trend
p-values, the number of subjects, the number of genes, the number of SNPs used
for the computation, the number of missings in the SNPs and the number of
permutations used to compute the permuted distribution of the minimum of the
ordered p-values from the marginal test of each SNP.
The minPtest function returns a list consisting of a matrix of permutation-based p-
values of the min P test for each candidate gene, a matrix of corrected permutation-
based p-values via Bonferroni correction method for each candidate gene, a matrix
of marginal trend p-values for each SNP from the original data set, a matrix of
corrected marginal trend p-values via Bonferroni correction method for each SNP
from the original data set, a matrix of permutated trend p-values for each SNP in
each permutation step, etc.
The main output of the minPtest call is the matrix of permutation-based p-values
of the min P test for each candidate gene.

> minPtest.object1$minp

minP

G1 0.301

G2 0.001

G3 0.328

G4 0.228

G5 0.244

6

More detailed information is provided by the summary function.

> summary(minPtest.object1,sign.SNP=TRUE)

p-values:

Gene minP gene.p.adjust SNP snp.p.value snp.p.adjust

1 G2 0.001 0.005 SNP54 0.0001362140 0.02724279

Above you can see the display provided by the summary function. The ta-
ble shows the gene with the adjusted permutation-based p-value smaller than
or equal to a threshold (level=0.05), the corresponding permutation-based p-
value, the adjusted permutation-based p-value as well as the SNP located on
this gene with adjusted marginal p-value smaller than or equal to the threshold,
as sign.SNP=TRUE, with marginal p-value and adjusted marginal p-value. The
summary function is useful to obtain a brief overview of the significant genes, after
Bonferroni correction, and the SNPs located on these genes. If sign.SNP=TRUE,
the summary only shows the SNPs located on the genes selected according to the
threshold, with adjusted marginal p-values smaller or equal to the threshold. Oth-
erwise all SNPs located on the genes chosen by the threshold are shown in the
summary.
The summary function returns a list of the same length as the number of the se-
lected genes by a threshold. Each item characterizes a gene selected according
to a threshold i.e. if level=1, the length of the list equals the number of genes
included in the fit. Each gene item contains a list of data.frames, a data.frame for
the permutation-based p-values and adjusted permutation-based p-values for this
gene and a data.frame for the marginal p-values and adjusted marginal p-values
for the SNPs located on this gene, either SNPs selected by a threshold or all SNPs
on this gene.

4.2 Computing the min P test using conditional logistic

regression and snowfall

We start by accessing the simulated data set of 3.2.
We sampled 100 subjects (50 cases and 50 controls) and 200 SNPs on 5 genes in
sim.ex2 (3.2) as in 3.1 except for the probability for neighborhood SNPs within the
blocks as we generated a break within the first block at SNP position 6 in each gene,
see 3.2. In this example, we illustrate the computation of the trend p-values using
conditional logistic regression which requires the installation of package Epi. The
computation of trend p-values using conditional logistic regression is automatically
selected by the minPtest function, using the following input from sim.ex2 (3.2).
As in 4.1, we include the response vector, the SNP matrix and a matrix comprising

7

the SNP names and the gene names on which the SNPs are located, generated
in sim.ex2. Compared to 4.1, we use the continuous and the binary covariate
simulated in 3.2 as matching variables through the matchset vector matchset and
do not include them in the covariate matrix cov for adjustment. Therefore, as no
covariates are used for adjustment, the formula has to be written as y ∼ 1 without
specifying a covariate matrix, however, a matchset vector has to be specified. We
set a seed to guarantee reproducibility of the results, even for different numbers
of parallel processes, see 3.1. We run the call of the minPtest function on a
compute cluster using 4 CPUs, to obtain acceleration by parallel computing by
setting option parallel=TRUE, requiring the installation of the snowfall package,
as the minPtest call can take some time. Concerning parallelization on a compute
cluster, i.e. with argument parallel=TRUE, there are two possibilities to run
minPtest:

• Start R on a commandline with sfCluster and preferred options, e.g. number
of cpus. The initialization function of package snowfall, sfInit(), has to
be called before calling minPtest.
sfCluster is a Unix tool for convenient management of R parallel processes.
It is available at www.imbi.uni-freiburg.de/parallel, with detailed in-
formation.

> sfInit()

> minPtest.object2 <- minPtest(y=sim.ex2$y, x=sim.ex2$x,

SNPtoGene=sim.ex2$SNPtoGene,

formula=y~1, matchset=sim.ex2$matchset,

parallel=TRUE, seed=seed1)

• Use any other solutions supported by snowfall. Argument parallel has to
be set to TRUE and number of cpus can be chosen in the sfInit() function.

> sfInit(parallel=TRUE,cpus=4)

> minPtest.object2 <- minPtest(y=sim.ex2$y, x=sim.ex2$x,

SNPtoGene=sim.ex2$SNPtoGene,

formula=y~1, matchset=sim.ex2$matchset,

parallel=TRUE,seed=seed1)

The latter could be an alternative to the parallelization on a multicore computer
with multicore for Microsoft Windows system users.
Again, independent of the chosen initialization function, the following display is
provided by the print function.

8

> minPtest.object2

Used method: conditional logistic regression for 100 subjects

Call: minPtest(y = sim.ex2$y, x = sim.ex2$x,

SNPtoGene = sim.ex2$SNPtoGene, formula = y ~ 1,

matchset = sim.ex2$matchset, seed = seed1, parallel = TRUE)

Number of genes: 5

Number of SNPs: 200

Number of missings in the SNP matrix: 0

Number of permutations: 1000

The next command extracts the matrix of permutation-based p-values of the
min P test for each candidate gene.

> minPtest.object2$minp

minP

G1 0.004

G2 0.345

G3 0.792

G4 0.270

G5 0.312

More information is provided by a summary function which returns a list of
data.frames for each candidate gene selected according to a threshold, see 4.1.
The following display shows the list item for G1 containing two data.frames, one
data.frame for the permutation-based p-value and adjusted permutation-based p-
value for G1 and one for the marginal p-values and adjusted marginal p-values for
the SNPs located on G1. Here, we show, instead of using the summary function,
the entire list item for gene G1.

> summary(minPtest.object2)$G1

$gene.p.values

Gene minP gene.p.adjust

1 G1 0.004 0.02

$snp.p.values

SNP snp.p_value snp.p.adjust

1 SNP15 0.002070020 0.4140041

2 SNP16 0.002526884 0.5053769

3 SNP19 0.003429856 0.6859712

9

4 SNP17 0.003728256 0.7456512

5 SNP1 0.371943971 1.0000000

6 SNP2 0.409689081 1.0000000

7 SNP3 0.409689081 1.0000000

8 SNP4 0.326128617 1.0000000

9 SNP5 0.211861133 1.0000000

10 SNP6 0.039743515 1.0000000

11 SNP7 0.020706071 1.0000000

12 SNP8 0.022520147 1.0000000

13 SNP9 0.037072000 1.0000000

14 SNP10 0.052586757 1.0000000

15 SNP11 0.006508902 1.0000000

16 SNP12 0.016151701 1.0000000

17 SNP13 0.029085604 1.0000000

18 SNP14 0.018493517 1.0000000

19 SNP18 0.006899747 1.0000000

20 SNP20 0.005824611 1.0000000

21 SNP21 0.009517110 1.0000000

22 SNP22 0.007810166 1.0000000

23 SNP23 0.041817448 1.0000000

24 SNP24 0.036156703 1.0000000

25 SNP25 0.028889167 1.0000000

26 SNP26 0.107261909 1.0000000

27 SNP27 0.082974190 1.0000000

28 SNP28 0.057018754 1.0000000

29 SNP29 0.031694448 1.0000000

30 SNP30 0.115757602 1.0000000

31 SNP31 0.724040250 1.0000000

32 SNP32 0.869453258 1.0000000

33 SNP33 0.872810958 1.0000000

34 SNP34 0.865809068 1.0000000

35 SNP35 1.000000000 1.0000000

36 SNP36 1.000000000 1.0000000

37 SNP37 0.647879273 1.0000000

38 SNP38 0.869443031 1.0000000

39 SNP39 0.875918977 1.0000000

40 SNP40 0.731854289 1.0000000

10

4.3 Plotting permutation-based p-values for each candi-

date gene and marginal p-values for the SNPs located

on these genes

The plot function is used to present the information provided by summary graph-
ically, i.e. to display the permutation-based p-values for each candidate genes and
the marginal p-values for each SNP located on these genes in a graphical way. The
plot function plots (− log

10
) transformed marginal p-values of each SNP in a basic

scatterplot. In addition, horizontal lines of the (−(lambda) · log
10

) transformed
permutation-based p-values of each gene covering all SNPs located on that gene
are plotted. The plot is indicated two separated y-axes ((− log

10
(psnp)) on left

hand side and
(−(lambda) · log

10
(minp)) on the right hand side). psnp is the matrix of marginal

trend p-values and minp is the matrix of permutation-based p-values from minPtest,
see 4.1 and 4.2. lambda is used to scale the y-axis for the log-transformed permutation-
based p-values. After the Bonferroni correction depending on the level, default is
0.05, significant genes and SNPs are highlighted in red, i.e. each gene line and each
SNP point with permutation-based p-value and marginal p-value smaller than or
equal to the level, is highlighted in red. The plot method allows to compare the
permutation-based p-values of each gene with marginal p-values of each SNP lo-
cated on these genes. The y-axes are (− log

10
) transformed to obtain a disposition

as a Manhattan plot for the points of the marginal p-values of the SNPs.

4.3.1 Plotting permutation-based and marginal p-values from 4.1

We display the (−0.5 · log
10

) transformed permutation-based p-values for each
candidate gene and the (− log

10
) transformed marginal p-values for each SNP

located on the genes of 4.1 with a scaled y-axis for the permutation-based p-values,
using the plot function.

> plot(minPtest.object1, lambda=0.5, gene.name=TRUE)

Figure 1 shows horizontal lines for each (−0.5 · log
10

) transformed permutation-
based p-value of the candidate genes and dots for each (− log

10
) transformed

marginal p-value of the SNPs located on these genes. The horizontal line of gene
G2 and one dot of a SNP (SNP54, see summary in 4.1) are highlighted in red, as
their p-values are smaller than or equal to level=0.05 after Bonferroni correc-
tion.
The summary and the plot show that the gene region-level summary is mostly
compatible with univariate statistical tests per SNP conducted separately over
multiple loci. In both functions, G2 and SNP54 are highlighted which could be

11

0
1

2
3

4

SNP

−
lo

g 1
0(p

sn
p)

0
1

2
3

−
0.

5(
lo

g 1
0(m

in
p)

)

G1 G2 G3 G4 G5

Figure 1: (−0.5 · log
10

) transformed permutation-based p-values for each can-
didate gene and (− log

10
) transformed marginal p-values for each SNP located

on these genes for 4.1. Dots: (− log
10

) transformed marginal p-values, lines:
(−0.5 · log

10
) transformed permutation-based p-values

expected as we fixed an effect size of 1.5 for SNP54 which is located on G2.
It should be stressed that, for real data, the plot above would usually contain a lot
more genes and SNPs located on these genes. This would rather lead to a dispo-
sition as to a Manhattan plot for the points of the (− log

10
) transformed marginal

p-values compared to Figure 1.

4.3.2 Plotting permutation-based and marginal p-values from 4.2 with

a break in the first block of each gene

We display the (−0.5 · log
10

) transformed permutation-based p-values for each
candidate gene and the (− log

10
) transformed marginal p-values for each SNP

located on these genes from 4.2 with a scaled y-axis for the permutation-based
p-values, using the plot function. The difference to 4.1 is the break within the
first block due to the modification of the probability for neighborhood SNPs of

12

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

SNP

−
lo

g 1
0(p

sn
p)

0
1

2

−
0.

5(
lo

g 1
0(m

in
p)

)

G1 G2 G3 G4 G5

Figure 2: (−0.5 · log
10

) transformed permutation-based p-values for each can-
didate gene and (− log

10
) transformed marginal p-values for each SNP located

on these genes for 4.2. Dots: (− log
10

) transformed marginal p-values, lines:
(−0.5 · log

10
) transformed permutation-based p-values

SNP-position 6 from 0.9 to 0.5 in each gene, see 3.2.

> plot(minPtest.object2, lambda=0.5, gene.name=TRUE)

Figure 2 shows horizontal lines for each (−0.5 · log
10

) transformed permutation-
based p-value of the candidate genes, as well as dots for each (− log

10
) transformed

marginal p-value of the SNPs located on these genes. Compared to Figure 1, only
the horizontal line of gene G1 is highlighted in red as the Bonferroni corrected
permutation-based p-values is smaller than the default level and, as no Bonferroni
corrected marginal p-value is smaller or equal than level, no dots of the SNP are
highlighted in red, see also the list items from the summary function in 4.2.

13

