modelStudio::modelStudio
uses your model, data and new observations, to provide local and global explanations. It generates plots and descriptions in the form of the serverless HTML site, that supports animations and interactivity made with D3.js.
Let’s use DALEX::HR
dataset to explore modelStudio
parameters:
train <- DALEX::HR[1:100,]
train$fired <- ifelse(train$status == "fired", 1, 0)
train <- train[,-6]
head(train)
gender | age | hours | evaluation | salary | fired |
---|---|---|---|---|---|
male | 32.58 | 41.89 | 3 | 1 | 1 |
female | 41.21 | 36.34 | 2 | 5 | 1 |
male | 37.71 | 36.82 | 3 | 0 | 1 |
female | 30.06 | 38.96 | 3 | 2 | 1 |
male | 21.10 | 62.15 | 5 | 3 | 0 |
male | 40.12 | 69.54 | 2 | 0 | 1 |
Prepare data and model for the explainer:
# create a random forest model
library("randomForest")
model <- randomForest(fired ~., data = train)
# prepare validation dataset
test <- DALEX::HR_test[1:100,]
test$fired <- ifelse(test$status == "fired", 1, 0)
test <- test[,-6]
# create an explainer
explainer <- DALEX::explain(model = model,
data = test[,-6],
y = test[,6],
verbose = FALSE)
# start modelStudio
library("modelStudio")
You can pass data points to new_observation
parameter for local explanations such as Break Down, SHAP Values and Ceteris Paribus Profiles.
You can achieve bigger or smaller modelStudio
grid with facet_dim
parameter.
You can manipulate time
parameter to set animation length. Value 0 will make them invisible.
N
is a number of observations used for calculation of partial dependency profiles. B
is a number of random paths used for calculation of SHAP values. You can decrease N
and B
parameters to lower computation time or increase them to get more accurate empirical results.
You can hide computation progress bar messages with show_info
parameter.
You can change viewer
parameter to set where to display modelStudio
. Best described here: r2d3 viewer argument
.
You can speed up modelStudio
computation by setting parallel
parameter to TRUE
. It uses parallelMap
package to calculate local explainers faster. It is really useful when using modelStudio
with complicated models, vast datasets or simply many observations are being processed.
All options can be set outside of function call. More on that here.
#set up the cluster
options(
parallelMap.default.mode = "socket",
parallelMap.default.cpus = 4,
parallelMap.default.show.info = FALSE
)
# calculations will be distributed into 4 cores
modelStudio(explainer, new_observation = test[1:16,], parallel = TRUE)
You can customize some of modelStudio
looks by overwriting default options returned by modelStudioOptions()
.
# set additional graphical parameters
new_options <- modelStudioOptions(
show_subtitle = TRUE,
bd_subtitle = "Hello World",
line_size = 5,
point_size = 9,
line_color = "pink",
point_color = "purple",
bd_positive_color = "yellow",
bd_negative_color = "orange"
)
modelStudio(explainer, new_observation = test[1,], options = new_options)
You can use DALEXtra::explain_*()
functions to explain various models. Bellow basic example of making modelStudio
for mlr model using DALEXtra::explain_mlr()
library(DALEXtra)
library(mlr)
# prepare mlr model
task <- mlr::makeRegrTask(id = "task",
data = train,
target = "fired")
learner <- mlr::makeLearner("regr.randomForest",
par.vals = list(ntree = 300),
predict.type = "response")
model <- mlr::train(learner, task)
# create an explainer for mlr model
explainer_mlr <- explain_mlr(model, data = test[,-6], y = test[,6])
# call model studio for mlr model
modelStudio(explainer_mlr,
new_observation = test[1:4,],
N = 100, B = 10)
Bellow basic example of making modelStudio
for scikit-learn model using DALEXtra::explain_scikitlearn()
and Python Anaconda.
library(DALEXtra)
titanic_test <- read.csv(system.file("extdata", "titanic_test.csv", package = "DALEXtra"))
titanic_train <- read.csv(system.file("extdata", "titanic_train.csv", package = "DALEXtra"))
# read scikitlearn model
yml <- system.file("extdata", "scikitlearn.yml", package = "DALEXtra")
pkl_gbm <- system.file("extdata", "scikitlearn.pkl", package = "DALEXtra")
pkl_SGDC <- "SGDC.pkl"
# prepare an explainer for scikitlearn model
explainer_scikit <- explain_scikitlearn(pkl_gbm,
yml = yml,
data = titanic_test[,1:17],
y = titanic_test[,18])
# start model studio
modelStudio(explainer_scikit,
new_observation = titanic_test[1:4,1:17],
N = 100, B = 10, options = modelStudioOptions(margin_left = 160))
modelStudio
should work with any explainer
class object. Find more about making those here.