Wei-Chen Chen i

A Quick Guide for the phyclust Package
(Based on Version 0.1-2)

Wei-Chen Chen

Towa State University

Contents
Acknowledgement i
1. Introduction 1
1.1. Installation Lo 1
1.2. Need help o o0 1
2. Sequence Data Input and Output 1
2.1. Standard coding oL 2
2.2. PHYLIP format e 2
2.3. FASTA format e 3
2.4. SaVe SEQUENCES . . .+ v v e e e e e e e e e 4
3. The ms+seqgenApproach 4
3.1. Use the ms () function to generate trees 5
3.2. Use the seqgen()function to generate sequences)
3.3. Give an ancestral sequence to thems+seqgen 7
4. Phylogenetic Clustering (Phyloclustering) 8
4.1. Mlustrate data e e e 10
4.2. Use the phyclust Ofunction L. 11
4.3. Use the .EMControl QOfunction 13
4.4. The ms+seqgen+phyclust approach 15
5. Use the haplo.post.prob()function for Hap-Clustering 16
6. What is Next 18
References 19
Acknowledgement

The author thanks Dr. Karin S. Dorman and Dr. Ranjan Maitra in Iowa State University for
their generous support, and is funded by Dr. Maitra’s grand, NSF CAREER DMS-0437555.

Wei-Chen Chen 1

1. Introduction

Without further notifications, this document is written for major functions and it should work
consistently for the later version.

This is a quick guide for the phyclust, and I demonstrate major functions in this document.
They includes reading and writing sequence data, two famous programs ms and seq-gen
(Hudson 2002; Rambaut and Grassly 1997) for generating a coalescent tree and sequences
based on the tree that both programs have been incorporated into the phyclust, the main
function phyclust() for finding sequence structures, and Haplo-Clustering (Tzeng 2005).
More information about theory, examples for other tool functions and new added functions can
be found on our website: Phylogenetic Clustering at http://thirteen-01.stat.iastate.
edu/snoweye/phyclust/.

In the Section 2, I introduce the basic data structures of the phyclust and I/O functions for
reading and writing basic PHYLIP and FASTA files. In the Section 3, I redo the "ms+seqgen”
approach in R. In the Section 4, I briefly describe the Phylogenetic Clustering, visualization
functions, the main function phyclust(), the auxiliary function .EMControl() for models,
initializations, optimizations, and EM algorithms, and propose a "ms+seqgen+phyclust” ap-
proach. In the Section 5, I display the function haplo.post.prob() for Hap-Clustering. In
the Section 6, I discuss some important issues which are in development or will be implemented
in the next version.

1.1. Installation

You can install directly from CRAN at http://cran.r-project.org or download the phy-
clust from our website. In most systems, you can install the phyclust by typing the command
into the R’s terminal as

> install.packages("phyclust")
When it finishes, you can use library() to load the package as
> library("phyclust")

Note that the phyclust requires the ape package (Paradis et al. 2004), and the ape also
requires other packages depending on its version. All the required packages will be checked
and automatically loaded when the phyclust is loading.

1.2. Need help

You can look and check more examples from the help pages or our website: http://thirteen-01.
stat.iastate.edu/snoweye/phyclust/. Also, you can mail to phyclust@gmail.com. All
commands are welcome, and bugs for the phyclust package or suggestions for Phylogenetic
Clustering will be fixed and implemented in the new version.

2. Sequence Data Input and Output

Two type of sequences are supported in the phyclust, nucleotide and SNP, and the types are
stored in .code.type as

http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://cran.r-project.org
http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
http://thirteen-01.stat.iastate.edu/snoweye/phyclust/
mailto:phyclust@gmail.com

2 Quick Guide for phyclust

> .code.type
(1] "NUCLEOTIDE" "SNP"

There are three input sources of sequence data in the phyclust:

1. Read the data from a text file in the PHYLIP format (Section 2.2).
2. Read the data from a test file in the FASTA format (Section 2.3).

3. Simulated by ms () and seqgen() (Section 3).

The reading functions read.* () will return a list object with class seq.data (Section 2.2),
and transfered data based on the standard coding and stored in a major element org exactly
used in most functions of the phyclust. There are two ways to output sequence data in the
phyclust, either the PHYLIP format or the FASTA format.

2.1. Standard coding

I use several internal objects to store default ids, and two of them are related to sequence
structure, .nucleotide and .snp, which store the mapping information in data.frame. They
are used to transfer data when reading and writing sequences. By typing the names, we can
see the details as

> .nucleotide
nid code code.l

1 0 A a
2 1 G g
3 2 C c
4 3 T t
5 4 - -
> .snp

sid code
1 0 1
2 1 2
3 2 -

The headings nid and sid are standard ids used in phyclust, and code and code.l are general
syntax for nucleotide {A, G, C, T} and SNP {1, 2} sequences. The standard ids will be directly
passed to the kernel of phyclust in C for efficient optimizations, so sequences are coded by
integers stated from 0. Note that I use ”-” to indicate gaps and other non general syntax.
The computations and functions to deal with ”-" are developing.

2.2. PHYLIP format

An example is "Great pony 524 EIAV rev dataset” (Baccam et al. 2003), and you can view
the file as

> data.path <- paste(.libPaths()[1], "/phyclust/data/pony524.phy", sep = "")
> edit(file = data.path)

Wei-Chen Chen

Here is the first 5 sequences and the first 50 sites. The first line says that there are 146
sequences and 405 sites in this files. The sequences are started from the second line, and the
first 10 characters are reserved for the sequence’s name or id.

146 405
AF314258 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggea
AF314259 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggea
AF314260 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggea
AF314261 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggea
AF314262 gatcctcagg gccctctgga aagtgaccag tggtgcaggg tcctccggea

By default, the read.phylip() will read in a PHYLIP file and assume the file contains
nucleotide sequences. It will read in sequences and store in a list object with class seq.data,
and the element org.code store the original data in a character matrix, and the element org
store the transfered original data in a numerical matrix. The transfered data are based on the
standard coding in the Section 2.1. The following is an example to read the pony524 dataset.

> data.path <- paste(.libPaths()[1], "/phyclust/data/pony524.phy", sep = "")
> (my.pony.524 <- read.phylip(data.path))

code.type: NUCLEOTIDE, n.seq: 146, seq.len: 405.

> str(my.pony.524)

List of 7
$ code.type: chr "NUCLEOTIDE"
$ info : chr " 146 405"
$ nseq : num 146
$ seqlen : num 405
$ segqname : Named chr [1:146] "AF314258" "AF314259" "AF314260" "AF314261"

..~ attr(*, "names")= chr [1:146] "1" "2" "3" 4"
org.code : chr [1:146, 1:405] "g" "g" "g" "g"

org : num [1:146, 1:405] 1111111111 ...
attr(x, "class")= chr "seq.data"

| & &

Another example is "Crohn’s disease SNP dataset” (Hugot et al. 2001), and the following is
an example to read in SNP sequences by changing code.type to SNP.

> data.path <- paste(.libPaths() [1], "/phyclust/data/crohn.phy", sep = "")
> (my.snp <- read.phylip(data.path, code.type = .code.typel[2]))
code.type: SNP, n.seq: 1102, seq.len: 8.

2.3. FASTA format

An example is "Great pony 625 EIAV rev dataset” (Baccam et al. 2003) Here is the first one
sequences and all 406 sites. It start with ”>” and followed by sequence’s id and descriptions,
then is followed by couple lines containing sequence itself.

>AF512608 Equine infectious anemia virus isolate R93.3/E98.1 gp45 and rev
GATCCTCAGGGCCCTCTGGAAAGTGACCAGTGGTGCAGGGTCCTTCGGCAGTCACTACCT

4 Quick Guide for phyclust

GAAGAAAAAATTCCATCGCAAACATGCATCGCGAGAAGACACCTGGGACCAGGCCCAACA
CAACATACACCTAGCAGGCGTGACCGGTGGATCAGGGAACAAATACTACAGGCAGAAGTA
CTCCAGGAACGACTGGAATGGAGAATCAGAGGAGTACAACAGGCGGCCAAAGAGCTGGAT
GAAGTCAATCGAGGCATTTGGAGAGAGCTACATTTCCGAGAAGACCAAAAGGGAGATTTC
TCAGCCTGGGGCGGTTATCAACGAGCACAAGAACGGCACTGGGGGGAACAATCCTCACCA
AGGGTCCTTAGACCTGGAGATTCGAAGCGAAGGAGGAAACATTTAT

By default, the read. fasta() will read in a FASTA file and assume the file contains nucleotide
sequences. As read.phylip(), it also return a list object with class seq.data. The following
is an example to read the ponyb524 dataset.

> data.path <- paste(.libPaths() [1], "/phyclust/data/pony625.fas", sep = "")
> (my.pony.625 <- read.fasta.nucleotide(data.path))

code.type: NUCLEOTIDE, n.seq: 62, seq.len: 406.

> str(my.pony.625)

List of 6

$ code.type: chr "NUCLEOTIDE"

$ nseq ! num 62

$ seqlen : int 406

$ seqname : chr [1:62] "AF512608" "AF512609" "AF512610" "AF512611"
$ org.code : chr [1:62, 1:406] "G" "G" "G" "G"

$ org :num [1:62, 1:406] 1111111111 ...

attr(*, "class")= chr "seq.data"

2.4. Save sequences

To save sequences in files, you can use functions write.* () which are analogical to functions
read.* () but input a data matrix X and a file name filename. The following I save two pony
datasets in PHYLIP and FASTA formats to the working directory.

PHYLIp

write.phylip(my.pony.625%org, "new.625.txt")
edit(file = "new.625.txt")

FASTA

write.fasta(my.pony.5248org, "new.524.txt")
edit(file = "new.524.txt")

V V V V Vv V

3. The ms+seqgen Approach

The phyclust incorporates two famous outsourced C programs ms (Hudson 2002) and seg-
gen (Rambaut and Grassly 1997). The original source code and documents are available
on the author’s websites. For ms, the pdf file (download from the author’s website) in
the installed directory phyclust/doc/Documents/msdoc.pdf or in the source code direc-
tory phyclust/inst/doc/Documents/msdoc.pdf For seq-gen, the html file (download from
the author’s website) in the installed directory phyclust/doc/Documents/Seq-Gen.v.1.3.

phyclust/doc/Documents/msdoc.pdf
phyclust/inst/doc/Documents/msdoc.pdf
phyclust/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html

Wei-Chen Chen

2/Seq-Gen.Manual.html or in the source code directory phyclust/inst/doc/Documents/
Seq-Gen.v.1.3.2/Seq-Gen.Manual.html.

In the file msdoc.pdf, Dr. Hudson demonstrated examples to use ms to generate coalescent
trees and piped them to seq-gen to generate sequences in the command mode. The phy-
clust directly uses their options in R functions ms() and seqgen(), and also modify partial
source code to use R’s library. Now, they can be distributed with R across platforms without
recompiling problems. Moreover, combining with the phyclust() function, we can have a
ms+seqgen+phyclust approach in the Section 4.4 for simulation and bootstrap studies.

3.1. Use the ms() function to generate trees

Almost all options are carried from the command mode program ms, and input as an option
opts in ms (). Just call the function, it will return and show you all options.

> ms()
> 7ms

The following is an example to generate a coalescent tree (-T) with 3 leaves (nsam = 3)
and the population growth rate is 0.1 (-G 0.1). The ms() returns a text output stored in an
array by line, and the tree is in NEWICK format which can be transfered by the read.tree()
function in the ape package (Paradis et al. 2004). The read.tree() returns an object with
class phylo which can be drawn by the function plot () or plot.phylo() in the ape package.

> set.seed(1234)

> (ret.ms <- ms(nsam = 3, opts = "-T -G 0.1"))
ms 31-T-GO.1
//

(1: 0.568774938583,(2: 0.355949461460,3: 0.355949461460): 0.212825477123) ;
> (tree.anc <- read.tree(text = ret.ms[3]))

Phylogenetic tree with 3 tips and 2 internal nodes.

Tip labels:
[1] n1|| ll2ll ||3||

Rooted; includes branch lengths.

> tree.anc$tip.label <- paste("a", 1:3, sep = "")
> plot(tree.anc, type = "c")

> axisPhylo()

3.2. Use the seqgen() function to generate sequences

Almost all options are carried from the command mode program seq-gen, and input as an
option opts in the seqgen() function. Just call the function, it will return and show you all
options. The seqgen() function requires to take in a rooted tree either NEWICK format or
an object with class phylo.

phyclust/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
phyclust/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
phyclust/inst/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
phyclust/inst/doc/Documents/Seq-Gen.v.1.3.2/Seq-Gen.Manual.html
msdoc.pdf

6 Quick Guide for phyclust

a3

a2

al

0.5 0.4 0.3 0.2 0.1 0

Figure 1: A diagram of a simple coalescent tree.

> seqgen()
> 7seqgen

In the following, I demonstrate the ms+seqgen approach to generate sequences according a
coalescent tree. This returns a character vector with class seqgen and contains 5 sequences,
and each has 40 bases (-140). The option -mHKY is for the HKY85 model (Hasegawa et al.
1985), but it is equivalent to the JC69 model (Jukes and Cantor 1969) if no further setting is
submitted.

set.seed(123)

ret.ms <- ms(nsam = 5, nreps = 1, opts = "-T")
tree.anc <- read.tree(text = ret.ms[3])
set.seed(123)

seqgen(opts = "-mHKY -140", newick.tree = ret.ms[3])
5 40

V V. V V V

CTCTCATTGGACGCACACTTTAGGGGGGGATTGCACTGCA
CTCTCTCTGGACGCACACTTTAAGGGGGGATTGAACTACA
CTCTTCGGGCTCGGATAAGTTTGGAGGGTTGTTCTCTACA
CTCTGAGTGCTCGGATTAGTTAGGGGGAATGACGTCTACA
CTCTTATCTCTCGGATAAGTTGGGGGTGATGGCTTTTACA

> set.seed(123)

> (ret.seq <- seqgen(opts = "-mHKY -140", rooted.tree = tree.anc))
5 40

1 CTCTCATTGGACGCACACTTTAGGGGGGGATTGCACTGCA

5 CTCTCTCTGGACGCACACTTTAAGGGGGGATTGAACTACA

S w NN o

Wei-Chen Chen

2 CTCTTCGGGCTCGGATAAGTTTGGAGGGTTGTTCTCTACA

3 CTCTGAGTGCTCGGATTAGTTAGGGGGAATGACGTCTACA

4 CTCTTATCTCTCGGATAAGTTGGGGGTGATGGCTTTTACA

> str(ret.seq)

Class 'seqgen' chr [1:6] " 5 40" "1 CTCTCATTGGACGCACACTTTAGGGGGG . ..

The seqgen() function does not necessary to take in a tree from the ms() function, but
the ms () function provides varied ways to construct a tree in different shapes based on the
coalescent theory. The seqgen() function also allows to input an ancestral sequence and
evolves the sequence along the given tree by inputing an option input. Originally, it uses a
file to store the information in the seq-gen package, and I implement a function to utilize this
option described in the Section 3.3.

3.3. Give an ancestral sequence to the ms+seqgen

The phyclust package provides two functions gen.seq.HKY() and gen.seq.SNP() to imple-
ment the ms+seqgen approach under a wide-range parameters. A rooted tree is required and
an ancestral sequence is an option.

The following example generates a tree first, and gives an ancestral sequence anc.HKY. The
process in the seqgen() will follow the parameters x (kappa) and 74, 7g, 7, 7 (pi.HKY) to
evolve the ancestral sequence (anc.HKY).

Generate a tree

set.seed(1234)

ret.ms <- ms(nsam = 5, nreps = 1, opts = "-T")
tree.ms <- read.tree(text = ret.ms[3])

Generate nucleotide sequences

(anc.HKY <- rep(0:3, 3))
(11 012301230123
> paste(nid2code(anc.HKY, lower.case = FALSE), collapse = "")
[1] "AGCTAGCTAGCT"

pi.HKY <- ¢(0.2, 0.2, 0.3, 0.3)

kappa <- 1.1

L <- length(anc.HKY)

set.seed(1234)

(HKY.1 <- gen.seq.HKY(tree.ms, pi.HKY, kappa, L, anc.seq = anc.HKY))
5 12

V V. V V V Vv V

\4

vV V V V

AGCTTGACCGGC
AGCTTCACCGGT
ACCTCGCTAGCT
ACGACGCTCGCT
CCTACGCTAGCT

g s N W

Note that the details of the gen.seq.HKY() may be a good example for advance users to
develop more flexible conditions such as recombinations, migrations and island models. Ba-
sically, it passes an option input to the seqgen(), and it can be the ancestral sequence or

8 Quick Guide for phyclust

other options used in the seq-gen program. The input takes in a character vector (including
the tree) where each element contains one line, and it will be store/write to a temporary file
in the seqgen() for further processing.

Source code from gen.seq.HKY().
L <- length(anc.seq)

mu <- paste(nid2code(anc.seq, lower.case = FALSE), collapse = "")
seqgname <- paste("Ancestor ", collapse = "")
input <- c(paste(" 1", length(anc.seq), sep = " "), paste(seqname,
mu, sep = ""), 1, write.tree(rooted.tree, digits = 12))
opts <- paste("-mHKY", " -t", ts.tv, " -f", paste(pilc(l,
3, 2, 4], collapse = ","), " -1", L, " -s", rate.scale,
n _u" s ttips + 1 s n _klll s n _qll s sep =" ll)

ret <- seqgen(opts, input = input)

Source code from seqgen().
if (lis.null(newick.tree)) {

write(newick.tree, file = temp.file.ms, sep = "")
}
else if (!is.null(input)) {

write(input, file = temp.file.ms, sep = "\n")
}
else {

stop("A newick or rooted/phylo tree is required.")
}

4. Phylogenetic Clustering (Phyloclustering)

Phylogenetic clustering (Phyloclustering) is a model-based approach based on evolution the-
ories to determine population structures in molecular level. Let X = (z,;)nx1 be the data
matrix containing N sequences observed of L sites where n = 1,...,N and [= 1,..., L.
Denote the sequence , = (Zn1,...,2,) € X and x,; € S where X contains all possible
sequences and S contains bases, e.g. S = {A, G, C, T} for nucleotide sequences.

A finite mixture distribution for model-based clusterings is

K

f(@nln, ©) = nifr(wn|O4)

k=1

where fi() is the density for kth component, n = {n1,...,nx} is the mixture proportion sum-
ming to one, and ® = {©1,...,Ok} contains parameters for components. By the Continuous
Time Markov Chain theory, fi() is modeled as transition probability p,, ,(t) of mutation
process (Felsenstein 2004). A sequence x,, evolves from a representative p, = (i1, .- -, prr) €
X dominating the kth cluster where py; € S, and process evolves with parameters Q;, in time
tr, which are allowed to differ, so that ©; = {p, Qi tx }, and the transition probability matrix
can be computed by P(t;,) = e®@+ fot constructing likelihood functions. This model can be
solved by EM algorithms (Dempster et al. 1977), sequences can be classified by the maximum

Wei-Chen Chen

posterior probabilities, and the number of clusters can be assessed by bootstrapping (Maitra
and Melnykov 2010).

Usually, the p;’s are different with each other and represent the central sequences of subpop-
ulations. The major evolution models used in Q) for nucleotide sequences supported in the
phyclust include JC69 (Jukes and Cantor 1969), K80 (Kimura 1980), and HKY85 (Hasegawa
et al. 1985) which are indicated in .substitution. I use an identifier (.identifer) to indi-
cate possible combinations of models for Q,, and ?; and list in the Table 1.

Table 1: Combinations of Models

Identifier Q t
EE Q=Q;==Qg h=t= =i
EV Qi=Q;="=Qg hFl# Fik
VE Q#Qy - #Qg ti=ty=-=lk

vV Q#FQy# - #Qg LU Fta# - Flk

Note that there is an evolution distance model .edist.model that I use to indicate the model
for computing distance of paired sequences, and they may differ to .substitution. There
are more options in the ape package (Paradis et al. 2004).

The .show.option() function will list all options available in the phyclust package as the
following. These options can be used in the .EMControl() function to generate a template
for the phyclust () function.

> .show.option()
boundary method: ADJUST, IGNORE
code type: NUCLEOTIDE, SNP
edist model: D_JC69, D_K80, D_HAMMING
em method: EM, ECM, AECM
identifier: EE, EV, VE, VV
init method: randomMu, NJ, randomNJ, PAM, K-Medoids, manualMu
init procedure: exhaustEM, emEM, RndEM, RndpEM
standard code:
nid code code.l

(1,1 o0 A a

[2,] 1 G g

(3,1 2 C c

(4,] 3 T t

(5,] 4 - -
sid code

[1,] 0 1

2,1 1 2

3,1 2 -

substitution model:
model code.type
[1,] JC69 NUCLEOTIDE
[2,] K80 NUCLEQTIDE

10 Quick Guide for phyclust

[3,] F81 NUCLEOTIDE
(4,] HKY85 NUCLEOTIDE
[5,1 SNP_JC69 SNP
[6,] SNP_F81 SNP
7,1 E_F81 NUCLEOTIDE
[8,] E_HKY85 NUCLEOTIDE
[9,] E_SNP_F81 SNP

All options will be explained in the help page and the short explanation will be given on
our website. Some options may perform better than others in different situations. For EM
algorithms, several initializations are necessary to obtain a better result, see the Section 4.3.

4.1. Illustrate data

The toy dataset has 100 nucleotide sequences and 200 sites in 4 clusters where the ancestral
tree height 0.15 and the descendant tree height 0.09, and sequences are evolved by a HKY85
model (Hasegawa et al. 1985). The 4 clusters are isolated in groups, but they also carry
common information about their ancestral sequences and differ with each other at some
mutated sites.

The following code shows a plot in the Figure 2 to illustrate the sequences. Each row represents
a sequence in the order of the dataset, the matrix X, and each column represents a site. Assume
the first sequence in the first cluster of the toy dataset is the common/consensus sequence.
The dashed lines split the clusters. The row fully drawn with colors is the common sequence,
and colors represent 4 different nucleotides. Other rows are drawn the mutations indicated
by colors comparing to the common sequence. The bottom row indicates the segregating sites
which are sites containing at least one mutations with the origin dots.

> seq.data.toy

code.type: NUCLEOTIDE, n.seq: 100, seq.len: 200.

> X <- seq.data.toy$org

> X.class <- as.numeric(gsub(".*-(.)", "\\1", seq.data.toy$seqname))
> plotdots(X, X.class)

The following code provides a plot in the Figure 3 to show the number of mutations by
comparing all sequences to the common sequence. The top plot is for the whole dataset, the
second to the bottom plots are for the sequences in the first to the fourth clusters indicating
by colors.

> plothist (X, X.class)

The following code shows a plot in the Firgure 4 to illustrate the distance method which
gives a rough structure of dataset. The phyclust.edist () function takes in a data matrix X,
compute and return pairwise distances for all sequences where .edist.model [3] is D_HAMMING
and the HAMMING distance is used as a distance measure. I apply a neighbor-joining method
to build a tree based on the distance matrix. The colors drawn on the leaf branches indicate
the clusters.

> (ret <- phyclust.edist(X, edist.model = .edist.model[3]))
Class 'dist' atomic [1:4950] 4 347 245582 ...

Wei-Chen Chen

Dots Plot
O] L] L]
O | " L] I. L] " .I L]
N . .
O | " I. " L]
m q- L L] . L]
@ . =
(&)
c
)
> " - n "
o b o
q) o _ L] L] L] L]
& 8 ., Do]
O i . - . L] . Ll
w ™ - . - L}
-1 . .
L] L] .l. . " " . L]
o S R | ., o
S o " =1 11 [TR .
—
I I I I I I
0 20 40 60 80 100
Sites
Figure 2: A dot plot for the toy dataset.
- attr(*, "Size")= int 100
- attr(*, "Diag")= logi FALSE
- attr(*, "Upper")= logi FALSE
- attr(*, "method")= chr "D_HAMMING"

> (ret

.tree <- nj(ret))

Phylogenetic tree with 100 tips and 98 internal nodes.

Tip labels:
1, 2, 3, 4, 5, 6,

Unrooted; includes branch lengths.
> plotnj(ret.tree, X.class = X.class)

4.2. Use the phyclust() function

12 Quick Guide for phyclust

~]

-

© -

< -

o: —
[T T T T T 1
0 2 4 6 8 10 12

~]

-

o -

< -

o: [(]
[T T T T T 1
0 2 4 6 8 10 12

~]

-

© -

< -

o
[T T T T T 1
0 2 4 6 8 10 12

~]

-

© -

< - -

o
[T T T T T 1
0 2 4 6 8 10 12

~]

-

© -

< -

o
[T T T T T 1
0 2 4 6 8 10 12

Figure 3: A histogram plot for the toy dataset.

I use the toy dataset to demonstrate the phyclust() function. Basically, the phyclust ()
function takes in two required objects, a data matrix X and the number of clusters K, then it
will fit a default model for X based on EMC = .EMC which specifies models and optimizations.
I will introduce this default control .EMC and the function .EMControl () to generate it in the
Section 4.3. In the following example, I fit a default model with 4 clusters to the toy data.

> set.seed(1234)

> (ret.1 <- phyclust(X, 4))

Phyclust Results:

code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.

init procedure: exhaustEM, method: randomMu.

model substitution: JC69, distance: D_JC69.

iter: 37 3158 0, convergence: 0, check.param: 1.

eps: 4.851e-13, error: O.

N.X.org: 100, N.X.unique: 87, L: 200, K: 4, p: 804, N.seg.site: 127.
logL: -1439, bic: 6581, aic: 4487, icl: 6588

Wei-Chen Chen

Figure 4: A NJ tree for the toy dataset.

identifier: EE
Eta: 0.4360 0.01149 0.284 0.2700
Tt: 0.003325
n.class: 44 1 28 27

> RRand(ret.1$class.id, X.class)
Rand adjRand Eindex

0.9018 0.7653 0.1655

> class(ret.1)

[1] "phyclust"

From the above reports, the default settings are used and the result does not fit well (with a
degenerated cluster, see n.class) due to the initialization problem. The initialization proce-
dure is exhaustEM and the initialization method is randomMu, so it randomly picks 4 sequences
as the center of clusters and run the EM algorithm to convergence. While the EM algorithms
do not guarantee to converge to global optimizations, more initializations should be explored
to seek a better solution efficiently. The adjusted Rand index (Hubert and Arabie 1985),
adjRand, is about 0.7653. The phyclust function returns a list object with class phyclust and
it can be as an input of other functions such as the function bootstrap.star.trees.seq()
for bootstrapping. in the Section 4.4.

4.3. Use the .EMControl() function

The .EMControl() function provides a list object as the default value for the phyclust ()
function. The internal object .EMC is a template. Each element indicates a configuration for
evolution models, identifier, initialization, optimizations, and EM algorithms. See the help

13

14 Quick Guide for phyclust

page for details, and visit our website for examples.

> ?7.EMControl
> 7.EMC

You can either modify from the template .EMC or use the function .EMControl() to generate
a new control. First, the following example modifies an object coping from the template. It
uses "emEM” as an initialization procedure, and the result of ret.2 has a higher likelihood
value than that of ret.1. The adjusted Rand index is also 1 that the prediction has a perfect
match to the dataset.

EMC.2 <- .EMC
EMC.2$init.procedure <- .init.procedure[2]
The same as
EMC.2 <- EMControl(init.procedure = "emEM")
set.seed(1234)
(ret.2 <- phyclust(X, 4, EMC = EMC.2))
Phyclust Results:
code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: emEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 103 8725 0, convergence: 0, check.param: 1.
eps: 2.753e-14, error: O.
N.X.org: 100, N.X.unique: 87, L: 200, K: 4, p: 804, N.seg.site: 127.
logL: -1379, bic: 6461, aic: 4367, icl: 6469
identifier: EE
Eta: 0.2700 0.1898 0.2801 0.2602
Tt: 0.003074
n.class: 27 19 28 26
> RRand(ret.2$class.id, X.class)
Rand adjRand Eindex
1.0000 1.0000 0.1209

V V. V V VvV V

Second, the following use the function .EMControl() to generate a new control that uses
"RndEM” as an initialization procedure, and fit a model with an "EV” identifier. An over
fitted model can also cause a degenerated cluster and usually needs more initializations to
have a better result. From the output, the Eta of the second cluster is smaller than others,
and the Tt gives an evolving time for sequences away from the ancestor of the cluster, and the
second cluster has a longer time than others. This makes the second cluster is degenerated.

EMC.3 <- .EMControl(init.procedure = "RndEM", identifier = "EV")
The same as

EMC.3 <- .EMC

EMC.3$init.procedure <- .init.procedure[3]

EMC.38identifer <- .identifier[3]

set.seed(1234)

(ret.3 <- phyclust(X, 4, EMC = EMC.3))

Phyclust Results:

V V. V V V V V

Wei-Chen Chen

code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: RndEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 104 51836 0, convergence: 0, check.param: 1.
eps: 4.278e-13, error: O.
N.X.org: 100, N.X.unique: 87, L: 200, K: 4, p: 807, N.seg.site: 127.
logL: -1453, bic: 6621, aic: 4519, icl: 6627
identifier: EV

Eta: 0.2696 0.01149 0.2844 0.4461

Tt: 0.002230 4.75 0.003663 0.003924

n.class: 27 0 28 45
> RRand(ret.3$class.id, X.class)

Rand adjRand Eindex
0.9002 0.7640 0.1698

Note that an convenient function find.best () is useful to search the best result based on the
highest likelihood value by repeatedly running on possible combinations of the .EMControl ()
function. This function may also take time to obtain a result.

4.4. The ms+seqgen+phyclust approach

Usually, the assessment for a fitted model includes the number of clusters, the evolution
models, and the identifiers for clusters. All of these may rely on information criteria, but it
may not accurate and sometimes it may give a wrong answer. A more elegant procedure is
based on the parameter bootstrap technique (Maitra and Melnykov 2010). The basic idea
is to bootstrap sequences by the functions ms() and seqgen() and re-sample from a fitted
model, a result of the phyclust function.

The bootstrap.star.trees.seq() function implements this procedure that it takes in a
fitted model, pcobj, a list object with class phyclust and utilizes the functions ms() and
seqgen() to re-sample new datasets. We can perform the same fitting method on all new
datasets to obtain an expected distribution of parameters, and compared to the observed
distribution obtained from the fitted model.

The following gives an example how to obtain a new datasets from a model with 2 clusters
based on the toy dataset. The function bootstrap.star.trees.seq() returns a list object
contains two elements trees and seq for all clusters. Combining seq and using the function
read.seqgen can read in the new dataset and save as a list object with class seq.data.

set.seed(1234)

ret.4 <- phyclust(X, 2)

ret.all <- bootstrap.star.trees.seq(ret.4)

str(ret.all)

List of 2

$ trees:List of 2

..$:List of 5

..$ edge : int [1:102, 1:2] 53 54 54 55 56 57 57 58 58 56 ...
..$ Nnode : int 51
..$ tip.label : chr [1:52] "42" "52" "27" "47"

vV V V V

15

16 Quick Guide for phyclust

..$ edge.length: num [1:102] 0.00000 0.00385 0.00000 0.00000 0.00000 ...
..$ n.tip : int 52

.. ..— attr(x, "class")= chr "phylo"

..$:List of 5

edge : int [1:94, 1:2] 49 50 50 49 51 52 53 54 54 55 ...

Nnode : int 47

tip.label : chr [1:48] "i6" "43" "10" "38"

edge.length: num [1:94] 0.00000 0.00385 0.00385 0.00000 0.00000 ...

n.tip : int 48

.. ..— attr(*, "class")= chr "phylo"
$ seq :List of 2

€hH P H P &BH

..$:Class 'seqgen' <chr [1:53] " 52 200" "42 GAGATCTTGACCGCTTT ...
..$:Class 'seqgen' <chr [1:49] " 48 200" "16 GAGATCTTGACCGCTTT ...
toy.new <- c(paste(ret.4$N.X.org, ret.43L, sep = " "),

ret.all$seq[[1]1]1[-1], ret.all$seql[[2]1][-11)
Not necessary, but keep consistence.
class(toy.new) <- "seqgen"
(X.new <- read.seqgen(toy.new))
code.type: NUCLEOTIDE, n.seq: 100, seq.len: 200.
> (ret.5 <- phyclust(X, 2))
Phyclust Results:
code type: NUCLEOTIDE, em method: EM, boundary method: ADJUST.
init procedure: exhaustEM, method: randomMu.
model substitution: JC69, distance: D_JC69.
iter: 39 3035 0, convergence: O, check.param: 1.
eps: 1.616e-12, error: O.
N.X.org: 100, N.X.unique: 87, L: 200, K: 2, p: 402, N.seg.site: 127.
logL: -1571, bic: 4993, aic: 3946, icl: 4994
identifier: EE
Eta: 0.4444 0.5556
Tt: 0.003846
n.class: 44 56

vV V.V + V

5. Use the haplo.post.prob() function for Hap-Clustering

Haplotype Grouping (Tzeng 2005) for SNP datasets is a simplified/degenerated method of
Phyloclustering. The author’s code has been integrate into the phyclust package, and the
original function has been renamed as haplo.post.prob(). The example used by the author
is the Crohn’s disease dataset (Hugot et al. 2001) which is also built in the package.

The following example returns the same results as Tzeng (2005), and the predicted number of
clusters based on the information criterion is 13. The function returns a list object and stores
in ret that ret$haplo stores information for the SNP sequences, ret$FD.id and ret$RD. id
stores full and reduced dimensional index, ret$FD.post and ret$RD.post stores full and
reduced dimensional posterior probabilities, and g.truncate show the truncated results.

> data.path <- paste(.libPaths() [1], "/phyclust/data/crohn.phy", sep = "")

Wei-Chen Chen

> my.snp <- read.phylip.snp(data.path)
> ret <- haplo.post.prob(my.snp$org, ploidy = 1)
> str(ret)
List of 6
$ haplo :List of 6
..$ haplotype: num [1:39, 1:81 0110110110 ...

..$ hap.prob : num [1:39] 0.00454 0.00181 0.11797 0.00635 0.00635 ...
..$ post :num [1:1102] 1111111111 ...
..$ haplcode : int [1:1102] 1111122333 ...
..$ hap2code : int [1:1102] 1 111122333 ...
..$ indx.subj: int [1:1102] 1 23456 7 89 10 ...
$ FD.id : int [1:39] 3 9 18 22 27 28 30 31 34 35 ...
$ RD.id : int [1:13] 3 9 18 22 27 28 30 31 34 35 ...
$ FD.post : num [1:1102, 1:39 0000000 1 11 ...
$ RD.post : num [1:1102, 1:131 0000011111 ...

$ g.truncate: int 13
> getcut.fun(sort(ret$haplo$hap.prob, decreasing = TRUE),
> nn = my.snp$nseq, plot = 1)

The getcut.fun() also illustrates a plot based on the information criterion to decide the
truncated dimension, and the Firgure 5 shows the results, 13 haplotypes will be used in the
haplo.post.prob() function.

0.20
|

0.10
I

Mo

i T e Py

0.00
I

Figure 5: A getcut plot for the Crohn’s disease dataset.

18 Quick Guide for phyclust

6. What is Next

Combining functions ms (), seqgen() and phyclust (), some functions automatically for sim-
ulations and bootstraps are being developed that can be used to examine and test different
models and evolution conditions. Gaps will be considered and involved in the models. Semi-
supervised clustering can be easily extended from the core of phyclust.

My future goal is to provide efficient tools and educational utilities for science researches in
statistics ways. Visualization for large dataset (Pemberton et al. 2008; Conrad et al. 2006)
can be implemented in R and evolution models for microsatellite dataset (Rosenberg et al.
2002; Shringarpure and Xing 2009) can be built by extending phyclust’s core.

References

Baccam P, Thompson R, Li Y, Sparks W, Belshan M, Dorman K, Wannemuehler Y, Oaks J,
Cornette J, Carpenter S (2003). “Subpopulations of Equine Infectious Anemia Virus Rev
Coexist In Vivo and Differ in Phenotype.” J Virol, 77(22), 12122-12131.

Conrad D, Jakobsson M, Coop G, Wen X, Wall J, Rosenberg N, Pritchard J (2006). “A World-
wide Survey of Haplotype Variation and Linkage Disequilibrium in the Human Genome.”
Nat Genet, 38(11), 1251-1260.

Dempster A, Laird N, Rubin D (1977). “Maximum Likelihood Estimation from Incomplete
Data via the EM Algorithm.” J R Stat Soc. B., 39(3), 1-38.

Felsenstein J (2004). Inferring Phylogenies. Sinauer Associates.

Hasegawa M, Kishino H, Yano T (1985). “Dating of the Human-Ape Splitting by a Molecular
Clock of Mitochondrial DNA.” J Mol Evol, 22(2), 160-174.

Hubert L, Arabie P (1985). “Comparing partitions.” Journal of Classification, 2, 193-218.

Hudson R (2002). “Generating Samples under a Wright-Fisher Neutral Model of Genetic
Variation.” Bioinformatics, 18, 337-338.

Hugot J, Chamaillard M, Zouali H, Lesage S, Cezard J, Belaiche J, Almer S, Tysk C, O’Morain
C, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau
C, Macry J, Colombel J, Sahbatou M, Thomas G (2001). “Association of NOD2 Leucine-
Rich Repeat Variants with Susceptibility to Crohn’s Disease.” Nature, 411.

Jukes TH, Cantor CR (1969). “Evolution of Protein Molecules.” In HN Munro, JB Allison
(eds.), Mammalian Protein Metabolism, volume 3, pp. 21-132. Academic Press, New York.

Kimura M (1980). “A Simple Method for Estimating Evolutionary Rates of Base Substitutions
through Comparative Studies of Nucleotide Sequences.” J Mol Evol, 16, 111-120.

Maitra R, Melnykov V (2010). “Simulating Data to Study Performance of Finite Mixture
Modeling and Clustering Algorithms.” Accepted.

Paradis E, Claude J, Strimmer K (2004). “APE: analyses of phylogenetics and evolution in
R language.” Bioinformatics, 20, 289-290.

Wei-Chen Chen 19

Pemberton T, Jakobsson M, Conrad D, Coop G, Wall J, Pritchard J, Patel P (2008). “Using
Population Mixtures to Optimize the Utility of Genomic Databases: Linkage Disequilibrium
and Association Study Design in India.” Ann Hum Genet, 72, 535-546.

Rambaut A, Grassly N (1997). “Seq-Gen: An Application for the Monte Carlo Simulation of
DNA Sequence Evolution along Phylogenetic Trees.” Comput Appl Biosci, 13(3), 235-238.

Rosenberg N, Pritchard J, Weber J (2002). “Genetic Structure of Human Populations.” Sci-
ence, 298, 2381-2385.

Shringarpure S, Xing E (2009). “mStruct: Inference of Population Structure in Light of Both
Genetic Admixing and Allele Mutations.” Genetics, 182, 575-593.

Tzeng JY (2005). “Evolutionary-Based Grouping of Haplotypes in Association Analysis.”
Genet Epidemiol, 28, 220-231.

	Acknowledgement
eserved @d = *-0.3cm
	1. Introduction
	1.1. Installation
	1.2. Need help
eserved @d = *-0.3cm

	2. Sequence Data Input and Output
	2.1. Standard coding
	2.2. PHYLIP format
	2.3. FASTA format
	2.4. Save sequences
eserved @d = *-0.3cm

	3. The `_12`12`$12=-1 ms+seqgen Approach
	3.1. Use the `_12`12`$12=-1 ms() function to generate trees
	3.2. Use the `_12`12`$12=-1 seqgen() function to generate sequences
	3.3. Give an ancestral sequence to the `_12`12`$12=-1 ms+seqgen
eserved @d = *-0.3cm

	4. Phylogenetic Clustering (Phyloclustering)
	4.1. Illustrate data
	4.2. Use the `_12`12`$12=-1 phyclust() function
	4.3. Use the `_12`12`$12=-1 .EMControl() function
	4.4. The ms+seqgen+phyclust approach
eserved @d = *-0.3cm

	5. Use the `_12`12`$12=-1 haplo.post.prob() function for Hap-Clustering
eserved @d = *-0.3cm
	6. What is Next
eserved @d = *-0.3cm
	References

