
Estimate Kinship and FST under Arbitrary Population

Structure with popkin
Alejandro Ochoa and John D. Storey

2018-01-26

1 Introduction

The popkin (“population kinship”) package estimates the kinship matrix of individuals and FST from their
biallelic genotypes. Our estimation framework is the first to be practically unbiased under arbitrary population
structures (Ochoa and Storey 2016a; Ochoa and Storey 2016b). Here we briefly summarize the notation and
intuition behind the key parameters.

1.1 Kinship and inbreeding coefficients

Kinship and inbreeding coefficients are probabilities of “identity by descent” (IBD) carefully defined elsewhere
(Ochoa and Storey 2016a; Ochoa and Storey 2016b). The reference ancestral population T sets the level
of relatedness treated as zero (as demonstrated in the sample usage section below). fT

j is the inbreeding

coefficient of individual j when T is the ancestral population, and ϕT
jk is the kinship coefficient of the pair

individuals j, k when T is the ancestral population. In a structured population we expect most fT
j , ϕT

jk > 0.

If j, k are the parents of l then fT
l = ϕT

jk, so within a panmictic subpopulation we expect fT
j ≈ ϕT

jk for j 6= k.

The “self-kinship” j = k case equals ϕT
jj = 1

2

(

1 + fT
j

)

rather than fT
j .

Let ΦT = (ϕT
jk) be the n × n matrix that contains all kinship coefficients of all individuals in a dataset. The

ancestral population T is the most recent common ancestor (MRCA) population if and only if min ϕT
jk = 0,

assuming such unrelated pairs of individuals exist in the dataset. Thus, the only role T plays in our estimates
is determining the level of relatedness that is treated as zero.

Note that the diagonal of our estimated ΦT contains ϕT
jj values rather than fT

j , which is required for statistical

modeling applications; however, ϕT
jj tends to take on much greater values than ϕT

jk for j 6= k, while fT
j ≈ ϕT

jk

for j 6= k within panmictic subpopulations (see above), so for visualization we strongly recommend replacing
the diagonal of ΦT with fT

j values.

1.2 The generalized FST

FST is also an IBD probability that equals the mean inbreeding coefficients in a population partitioned
into homogeneous subpopulations. We recently generalized the FST definition to arbitrary population
structures—dropping the need for subpopulations—and generalized the partition of “total” inbreeding into
“local” inbreeding (due to having unusually closely related parents) and “structural” inbreeding (due to the
population structure) (Ochoa and Storey 2016a). The current popkin estimates the total kinship matrix ΦT

only; in the future, popkin will also extract the structural kinship matrix. However, when all individuals are
“locally outbred”—the most common case in population data—FST is simply the weighted mean inbreeding
coefficient:

FST =

n
∑

j=1

wjfT
j ,

where 0 < wj < 1,
∑n

j=1
wj = 1 are weights for individuals intended to help users balance skewed samples

(i.e. if there are subpopulations with much greater sample sizes than others). The current popkin version
assumes all individuals are locally outbred in estimating FST.

1

1.3 The individual-level pairwise FST

Another quantity of interest is the individual-level pairwise FST, which generalize the FST between two
populations to pairs of individuals. Here each comparison between two individuals has a different ancestral
population, namely the MRCA population of the two individuals. When individuals are again locally outbred
and also locally unrelated, the pairwise FST is given in terms of the inbreeding and kinship coefficients (Ochoa
and Storey 2016a):

Fjk =

fT
j +fT

k

2
− ϕT

jk

1 − ϕT
jk

.

The popkin package also provides an estimator of the pairwise FST matrix (containing Fjk estimates between
every pair of individuals).

2 Sample usage

2.1 Input genotype data

The popkin function accepts biallelic genotype matrices in three forms:

1. A genotype matrix X with values in c(0,1,2,NA) only. It is preferable, though not necessary, for X to be
an integer matrix (with values in c(0L,1L,2L,NA) only, see ?storage.mode). This standard encoding
for biallelic SNPs counts reference alleles: 2 is homozygous for the reference allele, 0 is homozygous for
the alternative allele, 1 is heterozygous, and NA is missing data. Which allele is the reference does
not matter: popkin estimates the same kinship and FST for X and 2-X. By default popkin expects loci
along rows and individuals along columns (an m × n matrix); a transposed X is handled best by also
setting lociOnCols=TRUE.

2. BED-formatted data loaded with the BEDMatrix package, which popkin uses to keep memory usage
low. For example, load myData.bed, myData.bim, myData.fam using:

library(BEDMatrix)

X <- BEDMatrix(’myData’) # note: excluding extension is ok

This BEDMatrix object is not a regular matrix but popkin handles it correctly. Other genotype formats
can be converted into BED using plink2 or other software.

3. A function X(m) that when called loads the next m SNPs of the data, returning an m × n matrix in the
format of Case 1 above. This option allows direct and memory-efficient processing of large non-BED
data, but should be the last resort since users must write their own functions X(m) for their custom
formats. Try first converting your data to BED and loading with BEDMatrix.

2.2 Load and clean sample data

For illustration, let’s load the real human data worldwide sample (“HGDP subset”) contained in the lfa

package:

library(popkin)

library(lfa) # for hgdp_subset sample data only

X <- hgdp_subset # rename for simplicity

dim(X)

[1] 5000 159

2

https://www.cog-genomics.org/plink2

This data has m = 5000 loci and n = 159 individuals, and is oriented as popkin expects by default. These
samples have labels grouping them by continental subpopulation in colnames(X). To make visualizations
easier later on, let’s shorten these labels and reorder to have nice blocks:

shorten subpopulation labels

colnames(X)[colnames(X)==’AFRICA’] <- ’AFR’

colnames(X)[colnames(X)==’MIDDLE_EAST’] <- ’MDE’

colnames(X)[colnames(X)==’EUROPE’] <- ’EUR’

colnames(X)[colnames(X)==’CENTRAL_SOUTH_ASIA’] <- ’SAS’

colnames(X)[colnames(X)==’EAST_ASIA’] <- ’EAS’

colnames(X)[colnames(X)==’OCEANIA’] <- ’OCE’

colnames(X)[colnames(X)==’AMERICA’] <- ’AMR’

order roughly by distance from Africa

popOrder <- c(’AFR’, ’MDE’, ’EUR’, ’SAS’, ’EAS’, ’OCE’, ’AMR’)

applies reordering

X <- X[,order(match(colnames(X), popOrder))]

subpops <- colnames(X) # extract subpopulations vector

Here’s a quick view of the top left corner of the matrix X with values in 0, 1, 2, and NA (this example has no
missing values, but popkin handles them too). This matrix does not preserve the identity of the reference or
alternative alleles, but this distinction does not matter for estimating kinship and FST.

X[1:10,1:15]

AFR AFR AFR AFR AFR AFR AFR AFR AFR AFR AFR AFR AFR AFR AFR

rs4050954 2 2 1 2 1 1 1 2 2 0 0 2 0 2 0

rs302665 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0

rs2899446 2 1 2 2 1 2 1 2 2 2 2 1 2 2 2

rs10069940 2 1 2 2 0 2 0 0 1 0 0 0 0 0 1

rs6114921 1 0 0 1 2 1 2 2 1 0 1 1 0 0 1

rs201718 2 2 2 2 2 2 2 1 2 1 2 1 2 2 2

rs1335715 0 1 0 1 1 0 1 1 2 0 1 1 0 0 0

rs17006588 2 0 0 1 0 0 1 0 0 1 1 2 0 0 0

rs3885909 0 0 0 0 0 0 0 1 2 0 0 0 1 0 0

rs986457 0 1 0 1 1 0 2 1 1 1 1 1 1 1 0

Now we’re ready to analyze this data with popkin!

2.3 Estimate and visualize kinship using genotypes and subpopulations

Estimating a kinship matrix requires the genotype matrix X and subpopulation levels used only to estimate
the minimum level of kinship. Using the lfa sample data we cleaned in the last subsection, obtaining the
estimate is simple:

Phi <- popkin(X, subpops)

Now let’s visualize the raw kinship matrix estimate:

set outer margin for axis labels (left and right are non-zero)

par(oma=c(0,1.5,0,3))

set inner margin for subpopulation labels (bottom and left are non-zero), add padding

par(mar=c(1,1,0,0)+0.2)

now plot!

plotPopkin(Phi, labs=subpops)

3

AFRMDEEUR SAS EAS OCEAMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

0
0

.2
0

.4
0

.6

K
in

s
h

ip

In
d

iv
id

u
a

ls

Ignoring the overlapping labels for a moment, this plot shows that self-kinship (the diagonal) is much greater
than kinship between different individuals (min ϕT

jj ≥ 0.5). It makes more sense to plot inbreeding (fT
j)

values on the diagonal (they are on the same scale as ϕT
jk for j 6= k), which is achieved using inbrDiag:

par(oma=c(0,1.5,0,3))

par(mar=c(1,1,0,0)+0.2)

plotPopkin(inbrDiag(Phi), labs=subpops)

AFRMDEEUR SAS EAS OCEAMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

0
0

.1
0

.2
0

.3
0

.4

K
in

s
h

ip

In
d

iv
id

u
a

ls

Now let’s tweak the plot. We improve the labeling by setting labsEven=TRUE, which arranges the subpopula-
tion labels with equal spacing and adds lines that map to their blocks. To see these new lines, we must move
these labels further from the heatmap by setting labsLine=1. We shrink the labels with labsCex=0.7.

par(oma=c(0,1.5,0,3))

increase margins because labels go farther out

par(mar=c(2,2,0,0)+0.2)

plotPopkin(inbrDiag(Phi), labs=subpops, labsEven=TRUE, labsLine=1, labsCex=0.7)

4

AFR MDE EUR SAS EAS OCE AMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

0
0

.1
0

.2
0

.3
0

.4

K
in

s
h

ip

In
d

iv
id

u
a

ls

This figure clearly shows the population structure of these worldwide samples, with block patterns that are
coherent with serial founder effects in the dispersal of humans out of Africa. Since only m = 5000 SNPs are
included in this sample, the estimates are noisier than in more complete data (datasets routinely have over
300K SNPs).

This figure also illustrates how subpopulations are used to estimate kinship by popkin: they only set the zero
kinship as the mean kinship between the two most distant populations, which in this case are AFR and AMR.

2.4 Estimate FST and individual inbreeding from a kinship matrix

Since FST is the weighted mean of the inbreeding coefficients, and since some subpopulations are overrep-
resented in this data (EAS is much larger than the rest), it makes sense to use weights that balance these
subpopulations:

get weights

w <- weightsSubpops(subpops)

compute FST!

Note: don’t use the output to inbrDiag(Phi) or FST will be wrong!

fst(Phi, w)

[1] 0.2126638

If you compare these estimates to those we obtained for Human Origins (Ochoa and Storey 2016a), you’ll
notice things look a bit different: here FST is smaller and the kinship within AFR is relatively much higher
than within EUR or EAS. Besides containing many fewer SNPs, the SNPs in this HGDP sample were likely
biased for common variants in Europeans, which might explain the difference.

We can also extract the vector of inbreeding coefficients from the kinship matrix using inbr:

inbrs <- inbr(Phi) # vector of inbreeding coefficients

quick plot

par(mar=c(4, 4, 0, 0.2) + 0.2) # adjust margins

plot(density(inbrs), xlab=’inbreeding coefficient’, main=’’) # see their distribution

5

0.1 0.2 0.3 0.4 0.5

0
2

4
6

inbreeding coefficient

D
e

n
s
it
y

2.5 Estimate individual-level pairwise FST matrix from a kinship matrix

We calculate individual-level pairwise FST estimates from the previous kinship estimates using pwfst. Note
that the pairwise FST is a distance between pairs of individuals: approximately zero for individuals in the
same population, and increasing for more distant pairs of individuals.

pwF <- pwfst(Phi) # compute pairwise FST matrix from kinship matrix

legTitle <- expression(paste(’Pairwise ’, F[ST])) # fancy legend label

par(oma=c(0,1.5,0,3))

par(mar=c(2,2,0.2,0)+0.2)

NOTE no need for inbrDiag() here!

plotPopkin(pwF, labs=subpops, labsEven=TRUE, labsLine=1, labsCex=0.7, legTitle=legTitle)

AFR MDE EUR SAS EAS OCE AMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

0
0

.1
0

.2
0

.3
0

.4
P

a
ir
w

is
e

 F
S

T

In
d

iv
id

u
a

ls

2.6 Rescale kinship matrix in a subset of the data

Suppose now you’re interested in one subpopulation, say AFR:

indexesAfr <- subpops == ’AFR’

AFR subset of the kinship matrix

PhiAfr <- Phi[indexesAfr,indexesAfr]

6

kinship matrix plot

par(oma=c(0,1.5,0,3))

par(mar=c(0,0,0,0)+0.2) # zero margins for no labels

plotPopkin(inbrDiag(PhiAfr))

0
.2

0
.2

5
0

.3
0

.3
5

K
in

s
h

ip

In
d

iv
id

u
a

ls

estimate FST before rescaling (this value will be wrong, too high!)

fst(PhiAfr)

[1] 0.2474861

Removing populations changes the MRCA population T , drastically in this case (the reason the minimum
kinship is so large and the within-AFR FST above is wrong). To ensure the minimum kinship is zero, instead
of re-estimate the kinship matrix from the subset genotypes, it suffices to rescale the given kinship matrix
with rescalePopkin!

rescale PhiAfr

since subpops is missing, minimum Phi value is set to zero

(no averaging between subpopulations)

PhiAfr <- rescalePopkin(PhiAfr)

kinship matrix plot

par(oma=c(0,1.5,0,3))

par(mar=c(0,0,0,0)+0.2) # zero margins for no labels

plotPopkin(inbrDiag(PhiAfr))

0
0

.0
5

0
.1

5
0

.2
5

K
in

s
h

ip

In
d

iv
id

u
a

ls

FST is now correct, relative to the MRCA of AFR individuals

fst(PhiAfr)

[1] 0.08879701

There is clear substructure within Sub-Saharan Africa, but this sample data does not have more detailed

7

labels that could help us interpret further.

2.7 Plot multiple kinship matrices together

As a final example, we plot the global Phi and the rescaled AFR subset PhiAfr side-by-side, illustrating how
more than one kinship matrix can be plotted with a shared legend.

par(oma=c(0,1.5,0,3))

increase top margin for titles

par(mar=c(2,2,2,0)+0.2)

dummy labels to have lines in second panel

subpopsAfr <- subpops[indexesAfr]

plotPopkin(

list(inbrDiag(Phi), inbrDiag(PhiAfr)), # list of matrices

titles=c(’All’, ’AFR only, rescaled’), # title of each panel

labs=list(subpops, subpopsAfr), # pass per-panel labels using a list

labsEven=TRUE, # scalar options are shared across panels

labsLine=1,

labsCex=0.5

)

All

AFR MDE EUR SAS EAS OCE AMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

A AFR only, rescaled

AFR

A
F

R

B

0
0

.1
0

.2
0

.3
0

.4
K

in
s
h

ip

In
d

iv
id

u
a

ls

2.8 Plot kinship matrices with multiple levels of labels

The plotPopkin function has advanced options for plotting more than one level of labels. For this example,
we will highlight the three “blocks” that represent the first two splits in the human migration out of Africa:

create second level of labels

first copy first-level labels

blocks <- subpops

first block is AFR

blocks[blocks==’AFR’] <- ’B1’

second block is West Eurasians, broadly defined

blocks[blocks==’MDE’] <- ’B2’

blocks[blocks==’EUR’] <- ’B2’

blocks[blocks==’SAS’] <- ’B2’

third block is East Eurasians, broadly defined

8

blocks[blocks==’EAS’] <- ’B3’

blocks[blocks==’OCE’] <- ’B3’

blocks[blocks==’AMR’] <- ’B3’

par(oma=c(0,1.5,0,3))

increase margins again

par(mar=c(3,3,0,0)+0.2)

plotting with different options per level is more complicated...

plotPopkin(

inbrDiag(Phi),

labs=cbind(subpops,blocks), # ... labs is now a matrix with levels on columns

labsEven=c(TRUE, FALSE), # ... even spacing for first level only

labsLine=c(1,2), # ... put second level further out

labsCex=c(0.7, 1), # ... don’t shrink second level

labsSkipLines=c(TRUE, FALSE), # ... draw lines inside heatmap for second level only

ylabAdj=0.65 # push up outer margin ylab "Individuals"

)

AFR MDE EUR SAS EAS OCE AMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

B1 B2 B3

B
1

B
2

B
3

0
0

.1
0

.2
0

.3
0

.4

K
in

s
h

ip

In
d

iv
id

u
a

ls

The final example adds a second panel to what we have above, showing how options must be passed when
labels differ per panel and there are multiple levels:

par(oma=c(0,1.5,0,3))

par(mar=c(3,3,2,0)+0.2)

plotPopkin(

list(inbrDiag(Phi), inbrDiag(PhiAfr)),

titles=c(’All’, ’AFR only, rescaled’),

labs=list(cbind(subpops,blocks), subpopsAfr), # list of matrices

labsEven=c(TRUE, FALSE), # non-list: values are reused for both panels

labsLine=c(1,2),

make label bigger in second panel (custom per-panel values)

labsCex=list(c(0.5, 0.7), 1), # list of vectors

add lines for first level of second panel (custom per-panel values)

labsSkipLines=list(c(TRUE, FALSE), FALSE) # list of vectors

)

9

All

AFR MDE EUR SAS EAS OCE AMR

A
F

R
M

D
E

E
U

R
S

A
S

E
A

S
O

C
E

A
M

R

B1 B2 B3

B
1

B
2

B
3

A AFR only, rescaled

AFR

A
F

R

B

0
0

.1
0

.2
0

.3
0

.4
K

in
s
h

ip

In
d

iv
id

u
a

ls

References

Ochoa, Alejandro, and John D. Storey. 2016a. “FST And Kinship for Arbitrary Population Structures I:
Generalized Definitions.” bioRxiv doi:10.1101/083915. Cold Spring Harbor Labs Journals. doi:10.1101/083915.

———. 2016b. “FST And Kinship for Arbitrary Population Structures II: Method of Moments Estimators.”
bioRxiv doi:10.1101/083923. Cold Spring Harbor Labs Journals. doi:10.1101/083923.

10

https://doi.org/10.1101/083915
https://doi.org/10.1101/083923

	Introduction
	Kinship and inbreeding coefficients
	The generalized \Fst
	The individual-level pairwise \Fst

	Sample usage
	Input genotype data
	Load and clean sample data
	Estimate and visualize kinship using genotypes and subpopulations
	Estimate \Fst and individual inbreeding from a kinship matrix
	Estimate individual-level pairwise \Fst matrix from a kinship matrix
	Rescale kinship matrix in a subset of the data
	Plot multiple kinship matrices together
	Plot kinship matrices with multiple levels of labels

	References

