
Introduction to Reshaping Data with reshape

Hadley Wickham. http://had.co.nz/reshape

2006-02-27

Abstract

Restructuring data is a common task in practical data analysis, and it is usually unintuitive and
tedious. Data often has multiple levels of grouping (nested treatments, split plot designs, or repeated
measurements) and typically requires investigation at multiple levels. For example, from a long term
clinical study we may be interested in investigating relationships over time, or between times or patients
or treatments. Performing these investigations fluently requires the data to be reshaped in different ways.

Currently R supplies a reshape function that can perform some of these tasks, but confounds multiple
steps in the process and is hard to use. We propose a new conceptual framework for reshaping operations
and an R package to “melt” data frames and then flexibly “cast” them to meet your needs. This
framework also produces contingency tables, cross-tabulations, and summary statistics.

1 Introduction

This paper discusses a conceptual framework for data reshaping, and describes an implementation of these
principles in an R package, reshape.

Data reshaping is easiest to define with respect to aggregation. Aggregation is a common and familiar task
where data is reduced and rearranged into a smaller, more convenient form, with a concomitant reduction in
the amount of information. One commonly used aggregation procedure are Excel’s Pivot tables. Reshaping
involves a similar rearrangement, but preserves all original information. Where aggregation reduces many
cells in the original data set to one cell in the new dataset, reshaping preserves a one-to-one connection.

There are a number of general R functions that can aggregate data, for example tapply, by and
aggregate, and a function specifically for reshaping data, reshape. Each of these functions tends to deal
well with one or two specific scenarios, and each requires slightly different input arguments. In practice,
careful thought is usually required to piece together the correct sequence of operations to arrange the data
how you want. The reshape package overcomes these problems by using the conceptual framework defined
below to solve a general set of problems using just two functions, reshape and melt.

2 Conceptual framework

To help us think about all the ways we might rearrange a data set it is useful to think about data in a
somewhat unusual fashion. Usually, we think about data in terms of a matrix or data frame, where we have
observations in the rows and variables in the columns. In this form it is difficult to investigate relationships
between other facets of the data: between subjects, or treatments, or replicates. Reshaping the data allows
us to explore these other relationships while still being able to use the familiar tools that operate on columns.
Reshaping is an important (but often unrecognised) part of practical data analysis and is often necessary
when exploring, displaying and analysing data.

For the purposes of reshaping, we can divide the variables into two groups: identifier and measured
variables.

1



1. Identifier, or id, variables identify the unit that measurements take place on. Id variables are usually
discrete, and are typically fixed by design. In ANOVA notation (Yijk), id variables are the indices on
the variables (i, j, k).

2. Measured variables represent what is measured on that unit (Y ).

It is possible to take this abstraction a step further and say there are only id variables and a value,
where the id variables now also identify what measured variable the value represents. For example, we could
represent this table:

Subject Time Age Weight Height
John Smith 1 50 90 1.80
Mary Smith 1 NA NA 1.70

as:

Subject Time Variable Value
John Smith 1 Age 50
John Smith 1 Height 90
John Smith 1 Weight 1.80
Mary Smith 1 Height 1.7

Now each row represents one observation of one variable. This is what I will refer to as “melted” data.
Compared to the original data set, it has a new id variable “variable”, and a new column “value”, which
represents the value of that observation. We now have the data in a form in which there is no distinction
between our original observed variables and other id variables.

3 Implementation

With this conceptual framework established, I will discuss particular details of the implementation in R.
Ideally, we want easy to use tools to restructure data frames that use the insights from the ideas above. I
will discuss why we need a new package to reshape data, and how we can specify the form of the reshaped
data.

The first step is to “melt” the data. This is essentially a trivial operation, and very similar to the existing
R function stack. The next challenge is to specify how we want the data to look with the reshape function.
A natural way to do this is to specify which variables should form the columns and which should form the
rows. In the usual data frame, the “variable” id variable forms the columns, while all other id variables form
the rows. Aggregation occurs when the variables do not uniquely identify one row, and in this case we need
an aggregation function to reduce the data. Examples later in the chapter will make this concrete.

The order in which the row and column variables are specified in is very important. As with a contingency
table there are many possible ways of displaying the same variables, and the way they are organised reveals
different patterns in the data. Variables specified first vary slowest, and those specified last vary fastest.
Because comparisons are made most easily between adjacent cells, the variable you are most interested in
should be specified last, and the early variables should be thought of as conditioning variables. An additional
constraint is that displays have limited width but essentially infinite length, so variables with many levels
must be specified as row variables. It is also desirable to adhere to common conventions, so where possible,
“variable” should appear in the column specification.

3.1 Melting

The R command to melt a data set is melt. If you don’t specify either measured or id variables, the function
will try to guess which are id variables: any factors, integers or columns with 5 or fewer unique values. If
you specify only the measured variables, it assumes the remainder are identifier variables, and vice versa.

2



One complication of this design is that all values must be of the same type. This is not usually a big
problem because most of the time you are dealing with numeric data. I have been experimenting with storing
this data in a list for maximum flexibility—this however makes later code more complicated as we can no
longer rely on straightforward vectorisation.

3.2 Functions that return multiple values

Occasionally it is useful to aggregate with a function that returns multiple values, e.g. range, summary
etc. This can be thought of as combining multiple casts each with an aggregation function that returns one
variable. We do this with an additional variable, result variable that differentiates the multiple return
values. This result variable uses names if available, otherwise will create names of the form X1, X2,. . . By
default, this new id variable will be shown as last column variable, but you can specify the position manually
by including result variable in the list of row and column variables.

3.3 Row and column names

There are two ways to think about the results from an aggregation command, as either a matrix of numbers
with some attributes that describe the row and column names, or as a data frame with the row names
as columns. Most current R aggregation functions return the first, implicit, form, whereas cast returns
the explicit data frame form. Why the difference? The implicit form is often inconvenient to deal with—
rownames are data too.

3.4 Example

The reshape package is available on CRAN and can be installed using the R command install.packages("reshape").
This section will work through some techniques using the reshape package with an example data set
(french fries). The data is from a sensory experiment investigating the effect of different frying oils
on the taste of french fries over time. There are three different types of frying oils (treatment), each in
two different fryers (rep), tested by 12 people (subject) on 10 different days (time). The sensory attributes
recorded, in order of desirability, are potato, buttery, grassy, rancid, painty flavours. The first few rows of
the data look like:

time treatment subject rep potato buttery grassy rancid painty
61 1 1 3 1.00 2.90 0.00 0.00 0.00 5.50
25 1 1 3 2.00 14.00 0.00 0.00 1.10 0.00
62 1 1 10 1.00 11.00 6.40 0.00 0.00 0.00
26 1 1 10 2.00 9.90 5.90 2.90 2.20 0.00
63 1 1 15 1.00 1.20 0.10 0.00 1.10 5.10
27 1 1 15 2.00 8.80 3.00 3.60 1.50 2.30

One of the first things we might be interested in is how balanced this design is, and whether there are
many different missing values. We can investigate this using length as our aggregation function:

ff_d <- melt(french_fries, id=1:4)
cast(ff_d, subject ~ time, length)

time 1 2 3 4 5 6 7 8 9 10
subject X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

3 30 30 30 30 30 30 30 30 30 NA
10 30 30 30 30 30 30 30 30 30 30

3



15 30 30 30 30 25 30 30 30 30 30
16 30 30 30 30 30 30 30 29 30 30
19 30 30 30 30 30 30 30 30 30 30
31 30 30 30 30 30 30 30 30 NA 30
51 30 30 30 30 30 30 30 30 30 30
52 30 30 30 30 30 30 30 30 30 30
63 30 30 30 30 30 30 30 30 30 30
78 30 30 30 30 30 30 30 30 30 30
79 30 30 30 30 30 30 29 28 30 NA
86 30 30 30 30 30 30 30 30 NA 30

Of course we can also create our own aggregation function. Each subject should have had 30 observations
at each time, so by displaying the difference we can more easily see where the data is missing.

cast(ff_d, subject ~ time, function(x) 30 - length(x))

time 1 2 3 4 5 6 7 8 9 10
subject X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

3 0 0 0 0 0 0 0 0 0 NA
10 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 5 0 0 0 0 0
16 0 0 0 0 0 0 0 1 0 0
19 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 NA 0
51 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 1 2 0 NA
86 0 0 0 0 0 0 0 0 NA 0

We can also easily see the range of values that each variable takes:

cast(ff_d, variable ~ ., function(x) c(min=min(x), max=max(x)))

result_variable max min
variable max min
buttery 11.2 0
grassy 11.1 0
painty 13.1 0
potato 14.9 0
rancid 14.9 0

Since the data is fairly well balanced, we can do some (crude) investigation as to the effects of the different
treatments. For example, we can calculate the overall means for each sensory attribute for each treatment:

cast(ff_d, treatment ~ variable, mean,
margins=c("grand_col", "grand_row"))

variable buttery grassy painty potato rancid .

4



treatment buttery grassy painty potato rancid .
1 1.78 0.649 2.58 6.89 4.07 3.19
2 1.97 0.663 2.46 7.00 3.62 3.15
3 1.72 0.681 2.53 6.97 3.87 3.15
. 1.82 0.664 2.52 6.95 3.85 3.16

Note the row and column margins. We can also produce margins at different levels. The following
example shows the results broken down for subjects 3 and 11, with both overall means and means for each
subject:

cast(ff_d, treatment + subject ~ variable, mean,
margins="treatment", subset=subject %in% c(3,10))

variable buttery grassy painty potato rancid
treatment subject buttery grassy painty potato rancid

1 3 0.372 0.1889 3.11 6.22 2.11
10 6.750 0.5850 1.37 9.95 4.02
. 3.729 0.3974 2.20 8.18 3.11

2 3 0.589 0.1056 2.48 6.74 3.14
10 6.980 0.4750 0.82 10.00 2.15
. 3.953 0.3000 1.61 8.45 2.62

3 3 0.767 0.0944 2.87 5.29 2.86
10 6.450 0.1450 0.69 10.03 3.11
. 3.758 0.1211 1.72 7.79 2.99

Finally, since we have a repetition over treatments, we might be interested in how reliable each subject
is: are the scores for the two reps highly correlated? We can explore this graphically by reshaping the data
and using a lattice plot. Our graphical tools work best when the things we want to compare are in different
columns, so we’ll cast the data to have a column for each rep.

xyplot(X1 X2 | variable, cast(ff d, ... rep), aspect="iso")

5



X2

X
1

0

5

10

15

0 5 10

●

●

●

●
●

●

●

●●
●
●

●
●

●

●●
●

●

●●

●● ●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●
●

●

●●

●

●
●
●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●●●
●●

●

●

●

●
●

●

●

●
●

●●●

●

● ●●
●

●

●●
●●

● ●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●●
●
●

●

●

●

● ●

●

●

●

●●●●●
●

●

●

●

●
●

●

●
●●●

●

●

●

●
●●

●

●

●●●●
●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●●

●

●●●●
●

●

●

●

●●

●

●●●●

●

●

●

●
●

●

●
●

●●●●●

●

●

●
● ●

●● ●●●
●

●

●
●

●

●

●

●●●●●●

●

●

●

●●●●●● ●

●

●

●
●

●

●●●●●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●
●
●●

●

●
●

●

●

●

●
●●●

buttery

● ●●● ●● ●

●

● ●● ●●

●

●●●
●

●

●●
●

●
●●●●
●

●

● ●●

●

●

● ●
●

●

●●● ●

●
●

●
●

●

●●
●
●●

●

●
●
●●

●

●
●
●
●

●

●

●

● ●
●

●●●

●

●●●

●
●

●●

●

●●●

●

●●●●●● ●

●

●●●

●

●●● ●●●●

●

●

●

●

●

●●●
●

●●
●●●
●

● ●●●●

●

●
●

●
●

●●●

●
●●●

●

●● ●
●

●●●
●
●

●
●

●
●

●●●●
●
● ●●●●●●●

●

●

●
●
● ●●●● ●●

●

●
●

●

●●●● ●● ●●

●

●●●●●●●●

●

●

●●

●

●●●

●

●●●

●

● ●
●●

●

●
●●●●●●●●●

●

●●●●●●●● ●● ●

●

●●●●●●●●●●

●

●
●●●

●

●
●●

●

●●
●
●●●●●●●●
●
●●

●

●●● ●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●

●

●●●●

●

●● ●●
●

●● ●●

●

●
● ●

●
●

●●●●●●
●

●● ●●●
●
●

grassy

0 5 10

●

●

●

●

●
●

●
●

●

●

●

●

●●●●●

●

●

●●

●

●●●●
●
● ●

●

●●●

●

●●●
●

●

●

●

●

●

●●

●

●●●●●●● ●

●

●●

●

●●
●

●

●●●

●

●

●

● ●
●●●

●
●
●
●

●●●

●

●

●●●●●●
●

●

●

●●

●

●●●●●●● ●

●

●●
●

●

●

●
●
●●●
●

●

●●●●●●●●●

●

●
●

●

● ●

●●●●●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●● ●●●●
●

●●● ●●●

●

●

● ●
●●

●●

●

●

●

●
●● ●

●

●

●

●
●

●●

●
●

●●● ●

●

●

●●
●

●

●

●
● ●

●

●
●

●

●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

● ●

● ●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

painty

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

potato

0 5 10

0

5

10

15

●●
●
●

●

●
●

●

●●
●

●

●

●

●

● ●

●

●

●●

●

●●
●

●

●
●

●

●

●
●
●

●

●
●

●●

●
●

●
●

●

●
●

●●●

●

● ●

●

●

●

●

●●

●

●
● ●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●●

● ●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ● ●

●● ●
●

●

●

●

●●

●
●

●● ●

●

●●

●

●●
●

●

● ●

●

●

●
●

● ●

●

●

●

●

●
●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●●
●

●

● ●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●●

●

● ●
●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

rancid

If we wanted to explore the relationships between subjects or times or treatments we could follow similar
steps.

4 Where to go next

Now that you’ve read this introduction, you should be able to get started using reshape. I have tried to
include lots of examples in the documentation, so if you get stuck have a look at those. The best places to
start are ?melt and ?cast. If you have a problem and just can’t figure out what’s going wrong, please feel
free to email me, h.wickham@gmail.com. I’d also love to hear your comments or any ideas that would make
reshape better.

6

mailto:h.wickham@gmail.com

	Introduction
	Conceptual framework
	Implementation
	Melting
	Functions that return multiple values
	Row and column names
	Example

	Where to go next

