The rspa package for minimal record
adjustment
Package version 0.1.0

Mark van der Loo

September 21, 2012

Abstract

The R extension package rspa offers functionality to minimally ad-
just a vector x such that it obeys the system of (in)equations Ax < b.
The package implements the successive projection algorithm that was
recently described by Pannekoek and Zhang (2012). There are several
ways to define what “minimal” means here, and the package works
for fairly large systems of equations. Thus far it has been tested on
systems with on the order of 10° — 106 variables and 10* — 10° restric-
tions where convergence is reached in seconds.

Contents

1 Introduction

2 A simple example

3 Treating many records

4 Treating large problems

5 About the adjustment algorithm and convergence
6 Some notes on implementation

7 Conclusion

8 Acknowledgements

11

12

12

13

1 Introduction

In statistics one is often confronted with records or sets of estimated values
that have to obey a set of linear equations and/or inequations. Examples
include records from business surveys that have to obey accountancy rules
or production-consumption balances for national account systems. In prac-
tice, such data seldom obeys all restrictions leading to further inconsisten-
cies when the data is used as input for further analyses. One solution is to
minimally adjust the data so that all restrictions are obeyed.

Here, with minimal adjustment we mean that a record z° € R" is replaced
with a value x such that the objective function

d(z,z°) = [(x - 2°)W(z - 2°)]'?, (1)
is minimized as a function of x, subject to
Az <b.)

Here, W is a diagonal positive weight matrix.

Note that this problem has a simple geometric interpretation. The system
Az < bdescribes a convex region of R" (possibly of lower dimension than
n). The problem is to replace the vector z° outside this region with a record
z lying in it while keeping the distance d(x, ") as small as possible.

The algorithm implemented in the rspa package is a special case of the
successive projection algorithm for more general convex optimization
problems. The successive projection algorithm and the spacial case consid-
ered here was recently applied by Pannekoek and Zhang (2012) to adjust-
ment problems related to survey data. Their paper also contains a detailed
discussion of the algorithm.

The algorithm minimizes d(z, z°) as a function of x so that the restrictions
are obeyed up to a certain accuracy. This accuracy is defined as the maxi-
mum absolute deviance from Eq. (2) and will be defined more precisely in
Section 5.

This paper is intended as an overview of the package. For a detailed de-
scription of functions and their parameters, refer to the manual (help pages)
that included with the package. The rest of this paper is structured as fol-
lows. In Sections 2 to 4 we demonstrate some of the package’s core func-
tionality. Sections 5 and 6 provide some details on the inner workings of
the package which may help users to interpret the results.

2 A simple example

The following example is borrowed from Pannekoek and Zhang (2012) and
involves profit-loss account balances from a business survey. The problem
described in the reference involves a record of eight variables z ... zg that
have to obey the following rules.

Trs = T+ T8
r5 = XT3+ X4
rg = g+ X7
T4 Z 0.

The first task is to define these constraints in R. The rspa package offers
several ways to do this. One option, which we will use in this problem is
to make use of the editrules package (De Jonge and Van der Loo, 2012).

E <- editmatrix(expression(
x5 == x1 + x8,
x5 == x3 + x4,
x8 == x6 + x7,
x4 > 0))

The record in the example has the following values

x <= ¢(
x1=330,
x2=20,
x3=1000,
x4=30,
x5=950,
x6=500,
x7=200,
x8=700)

To confirm that this vector does not meet the constraints, we call violatedEdits
(also part of editrules).

violatedEdits(E, x, tol = 0.01)

edit
record numl num2 num3 num4
#H# [1,1 TRUE TRUE FALSE FALSE

This shows that x violates the first two rules (indicated with TRUE), at least
to within a tolerance of 0.01.

In the example of Pannekoek and Zhang (2012), the value of x5 is consid-
ered correct. We can therefore substitute it in the set of constraints (substValue)
and remove the corresponding variable from the set of constraints (reduce).

E <- reduce(substValue(E, , X[D)

Adjusting x with the adjust function from rspa so it meets the constraints
can be done as follows.

(y <- adjust(E, x))

Object of class adjusted

Status : success (using dense method)
Accuracy : 0.00488281

Objective : 85.0853

Iterations: 12

Timing (s): O

Solution:

x1 x2 x3 x4 x5 x6 x7 x8

282 20 950 0 950 484 184 668

The result is an object of class adjusted, which holds the found solution
and some convergence information on the algorithm. The solution can be
accessed as y$x. Using violatedEdits again, we see that now all restrictions
are obeyed.

violatedEdits(E, y$x, tol = 0.01)

edit
record numl num2 num3 numé4
#H# [1,]1 FALSE FALSE FALSE FALSE

The output shows that the solution obeys the restrictions to within 1072.
We will focus on the convergence criterion in the next section but before
that, note the following properties of the adjust function.

¢ It only adjusts variables in x that occur in at least one of the restric-
tions.

e If the first argument of adjust is an editmatrix and the variables in
x are named, they will automatically be matched so the order of vari-
ables is unimportant.

The adjust function is a generic function and it accepts constraints inmatrix,
sparseConstraints or editmatrix format. For small adjustment problems,

4

up to say a few hundred variables and constraints, the matrix or editmatrix
format will be fine. Large problems, with thousands (or millions) of vari-
ables and restrictions can be defined in sparse format and in that case the
adjustment problem is solved with a routine for sparse adjustment. This is
explained further in section 4.

3 Treating many records

To facilitate production-wise processing of many records, the function adjustRecords
can adjust all records in a data. frame to meet the same set of rules. The out-
put contains the adjusted records as well as logging information.

As an example, we create a new set of rules and generate some random
data.

F <- editmatrix(expression(
+y::Z7

>= 0,

>= 0,

>=0

N < X X

)

N <- 100

dat <- data.frame(
X = runif(100),
y = rnorm(100),
z = rlnorm(100)

By construction, it is very unlikely that all generated data obey the rules in
F. To adjust the data, a single call to adjustRecords is sufficient.

A <- adjustRecords(F, dat)
summary (A)

Object of class adjustedRecords
Records : 100

Adjusted: 100 (100 converged)
duration: 0.002s (total)

Summary of adjusted records:

#i# objective accuracy

Min. :0.008 Min. :0.000000
1st Qu.:0.412 1st Qu.:0.000000
Median :0.737 Median :0.000000
Mean :1.127 Mean :0.000906
3rd Qu.:1.267 3rd Qu.:0.001871
Max. :8.293 Max. :0.003307

By default, all variables in dat are adjusted to meet the rules in F. However,
one can optionally pass an array indicating which variables to adjust. It is
also possible to pass (an array or vector of) weights to control the relative
amount of change per variable. The return value of adjustRecords is an ob-
ject of class adjustedValues. It contains the adjusted records in A$adjusted
and a data. frame collecting status information in A$status.

The R generic summary and plot functions have been overloaded to get a
quick glance of result quality and amount of change from the original data.
Figure 1 shows the result of plotting A of the above example. Two plots
are created. The top panel shows a kernel density estimate of the accuracy
values for each record. The lower panel shows a kernel density estimate of
the objective function value. The actual values are shown as a “rug plot”
under the density plots. In this very simple example, the accuracy is exactly
zero for half of the treated records, indicating that the constraints are met
exactly after adjusting.

It is well-known that kernel density estimates can extrapolate into regions
where the actual probability density equals zero. Here, we need to make
sure that the estimated probability density for accuracy or objective func-
tion equals zero for values < 0. This is achieved by estimating the accuracy
density under a square root transform, and transforming back for graphical
representation. For the objective function a log-transform is applied.

4 Treating large problems

For problems where « has many coefficients and when there are many re-
strictions, the package includes an adjustment algorithm based on a sparse
representation of the restrictions. In a sparse representation, elements of
the restriction matrix A that are zero are not stored in computer memory.

Such a sparse representation is held in a sparseConstraints object. The
function sparseConstraints constructs such objects and accepts arguments
in the form of either

e An editmatrix

* Amatrix A, a constant vector b and an integer n— to indicate that the
first n— rows of A and b represent equalities.

* A data.frame holding row indices, column indices and non-zero co-
efficients of A in its three columns, the vector b and n—.

For large problems, the data.frame method is probably the most conve-
nient so this will be demonstrated below.

plot(A)

Accuracy (50 of 100 adjusted records positive)

o _|
™
%‘ Q
c
()]
©
o _
-
LD —
o | 1 I]
1 T T 1 T
0.000 0.001 0.002 0.003 0.004 0.005
Objective function (100 of 100 records adjusted)
<
3
(92)
@
2
2 o
(&) o
©
—
g
o |
o T | T I‘ | IH 1 HHHI\HI\HIH T T 1 I‘ | | T
5e-03 5e-02 5e-01 5e+00

Figure 1: Plotting an object of class adjustedRecords yields a density plot of
the accuracy (maximum absolute deviance from constraints) and objective
function value per record.

Consider again the constraints in E of page 4. After substituting x5 = 950,
it reads:

E

Edit matrix:

x1 x8 x3 x4 x6 x7 Ops CONSTANT
numl -1 -1 0 0 0 0 == -950
num2 0 0 -1 -1 0 0 == -950
num3 0 1 O 0 -1 -1 == 0
num4d 0 0 0-1 0 0 < 0
##

Edit rules:

numl : 950 == x1 + x8

num2 : 950 == x3 + x4
num3 : x8 == x6 + x7
num4 : 0 < x4

To create an object of class sparseConstraints we generate a data.frame
called rc and a vector b:

rc <- data.frame(
row=c(1, 1, 2, 2, 3, 3, 3, 4),
col =c(C1, 2, 3, 4, 2, 5, 6, 4),
coef = c(-1,-1,-1,-1, 1,-1,-1,-1)

)
b <- c(-950, -950, 0,0)

Compare these indices and coefficients with the editmatrix representation
above. With the sparseConstraints function a sparse representation is gen-
erated.

e <- sparseConstraints(rc, b, neq = 3, sorted = TRUE)
e

Sparse numerical constraints.
Variables : 6

Restrictions: 4 (printing 4)
#01 . -1xX0 + -1%X1 = -950

2 : -1%X2 + -1%xX3 = -950

#it 3 0 1%X1 + -1%X4 + -1xX5 = 0
4 . -1xX3 <0

By passing the argument sorted=TRUE, we tell sparseConstraints that the
input data.frame is sorted increasingly by column number (so it does not
have to sort it again). The function detected here that row- and column in-
dices are “base 1” (the lowest value equals 1). It is also possible to pass coef-
ficient definitions which are base 0. Note that we did not feed sparseConstraints

any names, so it makes up some names to represent the rules in textual
form.

The sparseConstraints object is a reference object that holds a pointer to an
object outside of R’s memory. Therefore, objects of class sparseConstraints

¢ cannot be copied. Copying generates a pointer to the same object.

¢ cannot be saved. Only the pointer to the external object will be stored.
The external object is destroyed by R’s garbage collector when R closes,
or when the sparseConstraints object is deleted or overwritten.

In a future version we might add a export option so that such objects can
be saved as a fixed-width file, for example.

Next, we define a new vector that matches these constraints and adjust it.

X_sparse <- c¢(330, 700, 1000, 30, 500, 200)
(adjust(e, x_sparse))

Object of class adjusted

Status : success (using sparse method)
Accuracy : 0.00488281

Objective : 85.0853

Iterations: 12

Timing (s): 0.314

Solution:

[1] 282 668 950 0 484 184

Which gives the expected results.

Finally, we show in Figure 2 a transcript of a case where we treated an ad-
justment problem of 474 948 variables under 60 675 constraints. We use the
LaF package of Van der Laan (2012) to read the matrix A in row-column-
coefficient format from a fixed-width file. Next, the constant vector b and
x are read using R’s default I/0 funcitons. The sparseConstraints object is
generated and stored in e. A printout shows the number of variables and
constraints. Because of the large number of variables no rules are printed
explicitly. A call to adjust adjusts the vector minimally and returns an
adjusted object. The solution was found in 5.66 seconds on an Intel®
Core™ i7-2677M CPU running at 1.80GHz.

library(LaF)

Loading required package: Rcpp
library(rspa)

Loading required package: editrules

read A-matrix
laf <- laf_open_fwf(
file = "prob2A.txt",
column_types = c("integer”,"integer”, "double"),
column_widths = ¢(10,10,4)
)
rowcol <- laf[]
laf <- close(laf)

read b-vector
b <- read.csv("prob2b.txt", header=FALSE)[,1]

read x-vector
x <- read.csv("prob2x.txt",header=FALSE)[,1]

e <- sparseConstraints(rowcol,b,neqg=length(b))

e
Sparse numerical constraints.
Variables 1 474948

Restrictions: 60675 (printing 0)

y <- adjust(e, x)

y
Object of class adjusted
Status : success (using sparse method)

Accuracy : 0.00770226

Objective : 47430.5

Iterations: 552

Timing (s): 5.661

Solution (truncated at 10):

[1] 5.4028322 3.5246546 3.7979088 1.1202164 2.5304367 0.2037056
[7] 97.9161357 1.5714899 4.5743395 -1.1756605

Figure 2: Transcript of treating an adjustment problem with 474 948 vari-
ables under 60 675 equality restrictions.

10

5 About the adjustment algorithm and convergence

The rspa package implements the successive projection algorithm as described
by Pannekoek and Zhang (2012). Given a vector for which Ax® £ b. The
algorithm solves the following minimization problem

arg min(z — %)W (z — z°)

s.t.
Ax < b, 3)

where W is a diagonal weight matrix with all weights positive. By default,
all weights are chosen equal to 1 in the package. In words, the algorithm
finds the vector with the smallest (weighted) Euclidean distance from the
starting vector z” that obeys the restrictions.

To define the convergence criterion, we separate the equality from inequal-
ity restrictions and write

A_x = b 4
Acxz < be. (5)

We now define e— as the maximum difference between the left- and right
hand side of (4) (the infinity norm, also know as L., or the Chebyshev
distance):

c = Az —b],. ®)
We also introduce the notation d< = A<x — b< and define
e< =5 (ld<| + a2, - @)

This formulation ensures that e< > 0 only when at least one inequality is
not obeyed by z. The algorithm works by iteratively improving z° until the
convergence parameter max(e—,e<) < ¢. In other words: the algorithm ter-
minates when the largest deviation from any of the (in)equality restrictions
is met within a small parameter .

In the case that the set of user-defined constraints are infeasible (contra-
dictory), the algorithm either diverges, resulting in NaN-coefficients, or the
algorithm oscillates without convergence until the maximum number of it-
erations have been performed. Both cases are detected and reported. For
sets of constraints that are stored as an editmatrix object, the function
isFeasible of the editrules packages is able to check whether the set of
constraints are contradictory.

Below is an example where the algorithm starts oscillating. It adjusts x for

the first constraint, violating the second, adjusts it for the second constraint,
violating the first, and so on.

11

e <- editmatrix(expression(x < 0, x > 1))
isFeasible(e)

[1] FALSE
adjust(e, c(x = 0.5))

Object of class adjusted

Status : maximum number of iterations reached (using dense method)
Accuracy : 1

Objective : 0.5

Iterations: 1000

Timing (s): O

Solution:

X

#H 1

6 Some notes on implementation

The core algorithms are implemented as C routines (following the C99 stan-
dard) that can be called from the R environment. The successive projec-
tion algorithm is implemented in a dense and a sparse version. The dense
version is called by adjust.matrix and is also the default method that is
called by adjust.editmatrix. If the optional argument method="sparse’
is passed to adjust.editmatrix, the editmatrix object will be coerced to a
sparseConstraints object prior to adjusting.

The sparseConstraints object is represented under the hood as a C struct
that resides outside of R’s memory. It is an R_ExternalPtr object, packed
in an R environment which is put in a S3 class. Since the object is not in
R’s memory, there is no point in trying to save a sparseConstraints object:
only the pointer value will be stored while the external structure will be
destroyed when R closes.

7 Conclusion

With the R extension package rspa, we have made the successive projec-
tion algorithm available for R users. In this paper we demonstrated how
(lots of) small adjustments problems can conveniently be solved using a
editmatrix definition of rules while large problems can be solved using a
sparse representation of the problem.

12

Future work may include extending the package to allow for the weight
matrix W to be non-diagonal and the possibility to read large problems
from multiple formats.

8 Acknowledgements

I am greatly indebted by Guido van den Heuvel who critically reviewed
the C code and pointed out many of the finer details of the C99 standard to
me. Any remaining bugs are of course of my doing.

References

Hildreth, C. (1957). A quadratic programming procedure. Naval research
logistics quarterly 4, 79-85.

Pannekoek, J. and L.-C. Zhang (2012). Optimal adjustments for inconsis-
tency in imputed data. Technical report, Statistics Netherlands. In press.

de Jonge, E. and M. van der Loo (2011-2012). editrules: R package for pars-
ing, applying and manipulating edit rules and error localization. R package
version 2.5-0.

van der Laan, D. (2012). LaF: methods for fast access to large ASCII files. R
package version 0.4.

13

