es() - Exponential Smoothing

Ivan Svetunkov

2017-09-04

es() is a part of smooth package. It allows constructing Exponential Smoothing (also known as ETS), selecting the most appropriate one among 30 possible ones, including exogenous variables and many more.

In this vignette we will use data from Mcomp package, so it is advised to install it.

Let’s load the necessary packages:

require(smooth)
require(Mcomp)

You may note that Mcomp depends on forecast package and if you load both forecast and smooth, then you will have a message that forecast() function is masked from the environment. There is nothing to be worried about - smooth uses this function for consistency purposes and has exactly the same original forecast() as in the forecast package. The inclusion of this function in smooth was done only in order not to include forecast in dependencies of the package.

The simplest call of this function is:

es(M3$N2457$x, h=18, holdout=TRUE)
## Time elapsed: 1.02 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha  beta 
## 0.108 0.000 
## Initial values were optimised.
## 5 parameters were estimated in the process
## Residuals standard deviation: 0.414
## Cost function type: MSE; Cost function value: 1268104.714
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1648.418 1649.078 1661.292 
## Forecast errors:
## MPE: 24.1%; Bias: 84.9%; MAPE: 39.3%; SMAPE: 48%
## MASE: 2.883; sMAE: 117.6%; RelMAE: 1.232; sMSE: 234.5%

In this case function uses branch and bound algorithm to form a pool of models to check and after that constructs a model with the lowest information criterion. As we can see, it also produces an output with brief information about the model, which contains:

  1. How much time was elapsed for the model construction;
  2. What type of ETS was selected;
  3. Values of persistence vector (smoothing parameters);
  4. What type of initialisation was used;
  5. How many parameters were estimated (standard deviation is included);
  6. Standard deviation of residuals. The model has multiplicative error term, so as a result the standard deviation is small.
  7. Cost function type and the value of that cost function;
  8. Information criteria for this model;
  9. Forecast errors (because we have set holdout=TRUE).

The function has also produced a graph with actuals, fitted values and point forecasts.

If we need prediction intervals, then we run:

es(M3$N2457$x, h=18, holdout=TRUE, intervals=TRUE)
## Time elapsed: 1.32 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha  beta 
## 0.108 0.000 
## Initial values were optimised.
## 5 parameters were estimated in the process
## Residuals standard deviation: 0.414
## Cost function type: MSE; Cost function value: 1268104.714
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1648.418 1649.078 1661.292 
## 95% parametric prediction intervals were constructed
## 89% of values are in the prediction interval
## Forecast errors:
## MPE: 24.1%; Bias: 84.9%; MAPE: 39.3%; SMAPE: 48%
## MASE: 2.883; sMAE: 117.6%; RelMAE: 1.232; sMSE: 234.5%

Due to multiplicative nature of error term in the model, the intervals are asymmetric. This is the expected behaviour. The other thing to note is that the output now also provides the theoretical width of prediction intervals and its actual coverage.

If we save the model (and let’s say we want it to work silently):

ourModel <- es(M3$N2457$x, h=18, holdout=TRUE, silent="all")

we can then reuse it for different purposes:

es(M3$N2457$x, model=ourModel, h=18, holdout=FALSE, intervals="np", level=0.93)
## Time elapsed: 0.08 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha  beta 
## 0.108 0.000 
## Initial values were provided by user.
## 1 parameter was estimated in the process
## 4 parameters were provided
## Residuals standard deviation: 0.428
## Cost function type: MSE; Cost function value: 1938252.127
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1993.245 1993.280 1995.990 
## 93% nonparametric prediction intervals were constructed

We can also extract the type of model in order to reuse it later:

modelType(ourModel)
## [1] "MAN"

This handy function, by the way, also works with ets() from forecast package.

We can then use persistence or initials only from the model to construct the other one:

es(M3$N2457$x, model=modelType(ourModel), h=18, holdout=FALSE, initial=ourModel$initial, silent="graph")
## Time elapsed: 0.02 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha  beta 
## 0.119 0.000 
## Initial values were provided by user.
## 3 parameters were estimated in the process
## 2 parameters were provided
## Residuals standard deviation: 0.431
## Cost function type: MSE; Cost function value: 1937089.528
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1997.176 1997.392 2005.411
es(M3$N2457$x, model=modelType(ourModel), h=18, holdout=FALSE, persistence=ourModel$persistence, silent="graph")
## Time elapsed: 0.02 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha  beta 
## 0.108 0.000 
## Initial values were optimised.
## 3 parameters were estimated in the process
## 2 parameters were provided
## Residuals standard deviation: 0.431
## Cost function type: MSE; Cost function value: 1937169.382
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1997.181 1997.397 2005.416

or provide some arbitrary values:

es(M3$N2457$x, model=modelType(ourModel), h=18, holdout=FALSE, initial=1500, silent="graph")
## Time elapsed: 0.1 seconds
## Model estimated: ETS(MAN)
## Persistence vector g:
## alpha  beta 
## 0.117 0.000 
## Initial values were optimised.
## 5 parameters were estimated in the process
## Residuals standard deviation: 0.435
## Cost function type: MSE; Cost function value: 1936550.947
## 
## Information criteria:
##      AIC     AICc      BIC 
## 2001.144 2001.695 2014.869

Using some other parameters may lead to completely different model and forecasts:

es(M3$N2457$x, h=18, holdout=TRUE, cfType="aMSTFE", bounds="a", ic="BIC", intervals=TRUE)
## Time elapsed: 0.38 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha 
##  0.08 
## Initial values were optimised.
## 3 parameters were estimated in the process
## Residuals standard deviation: 0.42
## Cost function type: aMSTFE; Cost function value: 246.291
## 
## Information criteria:
##      AIC     AICc      BIC 
## 25551.52 25556.16 25690.55 
## 95% parametric prediction intervals were constructed
## 72% of values are in the prediction interval
## Forecast errors:
## MPE: 33.3%; Bias: 90.4%; MAPE: 43.3%; SMAPE: 56.3%
## MASE: 3.232; sMAE: 131.9%; RelMAE: 1.381; sMSE: 277.6%

You can play around with all the available parameters to see what’s their effect on final model.

In order to combine forecasts we need to use “C” letter:

es(M3$N2457$x, model="CCN", h=18, holdout=TRUE, silent="graph")
## Estimation progress:    10%20%30%40%50%60%70%80%90%100%... Done!
## Time elapsed: 0.96 seconds
## Model estimated: ETS(CCN)
## Initial values were optimised.
## Residuals standard deviation: 1408.59
## Cost function type: MSE
## 
## Information criteria:
## Combined AICc 
##      1647.651 
## Forecast errors:
## MPE: 27.8%; Bias: 88.4%; MAPE: 40.5%; SMAPE: 50.8%
## MASE: 3.005; sMAE: 122.6%; RelMAE: 1.284; sMSE: 249.9%

Model selection from a specified pool and forecasts combination are called using respectively:

es(M3$N2457$x, model=c("ANN","AAN","AAdN","ANA","AAA","AAdA"), h=18, holdout=TRUE, silent="graph")
## Estimation progress:    17%33%50%67%83%100%... Done!
## Time elapsed: 0.61 seconds
## Model estimated: ETS(AAN)
## Persistence vector g:
## alpha  beta 
##     0     0 
## Initial values were optimised.
## 5 parameters were estimated in the process
## Residuals standard deviation: 1410.988
## Cost function type: MSE; Cost function value: 1888265.077
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1687.037 1687.697 1699.911 
## Forecast errors:
## MPE: 27.7%; Bias: 88.2%; MAPE: 40.9%; SMAPE: 51.2%
## MASE: 3.022; sMAE: 123.3%; RelMAE: 1.291; sMSE: 251.8%
es(M3$N2457$x, model=c("CCC","ANN","AAN","AAdN","ANA","AAA","AAdA"), h=18, holdout=TRUE, silent="graph")
## Estimation progress:    17%33%50%67%83%100%... Done!
## Time elapsed: 0.61 seconds
## Model estimated: ETS(CCC)
## Initial values were optimised.
## Residuals standard deviation: 1361.192
## Cost function type: MSE
## 
## Information criteria:
## Combined AICc 
##      1688.456 
## Forecast errors:
## MPE: 25.6%; Bias: 86.1%; MAPE: 39.9%; SMAPE: 49.3%
## MASE: 2.939; sMAE: 119.9%; RelMAE: 1.256; sMSE: 241.7%

Now let’s introduce some artificial exogenous variables:

x <- cbind(rnorm(length(M3$N2457$x),50,3),rnorm(length(M3$N2457$x),100,7))

and fit a model with all the exogenous first:

es(M3$N2457$x, model="ZZZ", h=18, holdout=TRUE, xreg=x)
## Time elapsed: 0.43 seconds
## Model estimated: ETSX(MNN)
## Persistence vector g:
## alpha 
## 0.148 
## Initial values were optimised.
## 5 parameters were estimated in the process
## Residuals standard deviation: 0.413
## Xreg coefficients were estimated in a normal style
## Cost function type: MSE; Cost function value: 1258845.079
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1647.707 1648.367 1660.581 
## Forecast errors:
## MPE: 24.4%; Bias: 86.8%; MAPE: 39.7%; SMAPE: 48.6%
## MASE: 2.912; sMAE: 118.8%; RelMAE: 1.244; sMSE: 241.6%

or construct a model with selected exogenous (based on IC):

es(M3$N2457$x, model="ZZZ", h=18, holdout=TRUE, xreg=x, xregDo="select")
## Time elapsed: 0.35 seconds
## Model estimated: ETS(MNN)
## Persistence vector g:
## alpha 
## 0.145 
## Initial values were optimised.
## 3 parameters were estimated in the process
## Residuals standard deviation: 0.415
## Cost function type: MSE; Cost function value: 1288657.07
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1647.978 1648.413 1658.277 
## Forecast errors:
## MPE: 26.3%; Bias: 87%; MAPE: 39.8%; SMAPE: 49.4%
## MASE: 2.944; sMAE: 120.1%; RelMAE: 1.258; sMSE: 242.7%

or the one with the updated xreg:

ourModel <- es(M3$N2457$x, model="ZZZ", h=18, holdout=TRUE, xreg=x, updateX=TRUE)

If we want to check if lagged x can be used for forecasting purposes, we can use xregExpander() function:

es(M3$N2457$x, model="ZZZ", h=18, holdout=TRUE, xreg=xregExpander(x), xregDo="select")
## Time elapsed: 0.74 seconds
## Model estimated: ETSX(MNN)
## Persistence vector g:
## alpha 
##  0.15 
## Initial values were optimised.
## 4 parameters were estimated in the process
## Residuals standard deviation: 0.41
## Xreg coefficients were estimated in a normal style
## Cost function type: MSE; Cost function value: 1258903.036
## 
## Information criteria:
##      AIC     AICc      BIC 
## 1645.712 1646.147 1656.011 
## Forecast errors:
## MPE: 26%; Bias: 86.9%; MAPE: 39.8%; SMAPE: 49.2%
## MASE: 2.926; sMAE: 119.4%; RelMAE: 1.25; sMSE: 236.2%

If we are confused about the type of estimated model, the function formula() will help us:

formula(ourModel)
## [1] "y[t] = (l[t-1] + b[t-1]) * exp(a1[t-1] * x1[t] + a2[t-1] * x2[t]) * e[t]"

A feature available since 2.1.0 is fitting ets() model and then using its parameters in es():

etsModel <- forecast::ets(M3$N2457$x)
esModel <- es(M3$N2457$x, model=etsModel, h=18)

The point forecasts in the majority of cases should the same, but the prediction intervals may be different (especially if error term is multiplicative):

forecast(etsModel,h=18,level=0.95)
##          Point Forecast      Lo 95    Hi 95
## Aug 1992       8619.214 1215.16444 16023.26
## Sep 1992       8674.340 1086.29318 16262.39
## Oct 1992       8729.467  958.84520 16500.09
## Nov 1992       8784.593  832.69344 16736.49
## Dec 1992       8839.719  707.72264 16971.71
## Jan 1993       8894.845  583.82787 17205.86
## Feb 1993       8949.971  460.91328 17439.03
## Mar 1993       9005.097  338.89106 17671.30
## Apr 1993       9060.223  217.68056 17902.77
## May 1993       9115.349   97.20746 18133.49
## Jun 1993       9170.475  -22.59688 18363.55
## Jul 1993       9225.602 -141.79599 18593.00
## Aug 1993       9280.728 -260.44882 18821.90
## Sep 1993       9335.854 -378.61019 19050.32
## Oct 1993       9390.980 -496.33117 19278.29
## Nov 1993       9446.106 -613.65942 19505.87
## Dec 1993       9501.232 -730.63954 19733.10
## Jan 1994       9556.358 -847.31330 19960.03
forecast(esModel,h=18,level=0.95)
##          Point forecast Lower bound (2.5%) Upper bound (97.5%)
## Aug 1992       8619.214           3651.070            20145.95
## Sep 1992       8674.340           3749.634            20954.14
## Oct 1992       8729.467           3785.703            22242.53
## Nov 1992       8784.593           3751.308            23007.18
## Dec 1992       8839.719           3785.024            23182.85
## Jan 1993       8894.845           3743.804            23952.08
## Feb 1993       8949.971           3801.560            25118.78
## Mar 1993       9005.097           3868.788            26087.47
## Apr 1993       9060.223           3896.555            26881.35
## May 1993       9115.349           4017.338            27289.40
## Jun 1993       9170.475           4054.433            28671.74
## Jul 1993       9225.602           4076.137            29672.31
## Aug 1993       9280.728           4048.523            29589.86
## Sep 1993       9335.854           4011.002            30739.02
## Oct 1993       9390.980           4059.053            31987.42
## Nov 1993       9446.106           4083.420            32661.74
## Dec 1993       9501.232           4160.683            33274.27
## Jan 1994       9556.358           4174.078            34747.98