Here a go-to summary about statistical test carried out and the returned effect size for each function is provided. This should be useful if one needs to find out more information about how an argument is resolved in the underlying package or if one wishes to browse the source code. So, for example, if you want to know more about how one-way (between-subjects) ANOVA, you can run ?stats::oneway.test
in your R console.
Abbreviations used: CI = Confidence Interval
The table below summarizes all the different types of analyses currently supported in this package-
Description | Parametric | Non-parametric | Robust | Bayesian |
---|---|---|---|---|
Between group/condition comparisons | ✅ | ✅ | ✅ | ✅ |
Within group/condition comparisons | ✅ | ✅ | ✅ | ✅ |
Distribution of a numeric variable | ✅ | ✅ | ✅ | ✅ |
Correlation between two variables | ✅ | ✅ | ✅ | ✅ |
Association between categorical variables | ✅ | ✅ | ❌ | ✅ |
Equal proportions for categorical variable levels | ✅ | ✅ | ❌ | ✅ |
Random-effects meta-analysis | ✅ | ❌ | ✅ | ✅ |
Summary of Bayesian analysis
Analysis | Hypothesis testing | Estimation |
---|---|---|
(one/two-sample) t-test | ✅ | ✅ |
one-way ANOVA | ✅ | ✅ |
correlation | ✅ | ✅ |
(one/two-way) contingency table | ✅ | ✅ |
random-effects meta-analysis | ✅ | ✅ |
Here a go-to summary about statistical test carried out and the returned effect size for each function is provided. This should be useful if one needs to find out more information about how an argument is resolved in the underlying package or if one wishes to browse the source code. So, for example, if you want to know more about how one-way (between-subjects) ANOVA, you can run ?stats::oneway.test
in your R console.
two_sample_test
+ oneway_anova
No. of groups: 2
=> two_sample_test
No. of groups: > 2
=> oneway_anova
Hypothesis testing
Type | No. of groups | Test | Function used |
---|---|---|---|
Parametric | > 2 | Fisher’s or Welch’s one-way ANOVA | stats::oneway.test |
Non-parametric | > 2 | Kruskal–Wallis one-way ANOVA | stats::kruskal.test |
Robust | > 2 | Heteroscedastic one-way ANOVA for trimmed means | WRS2::t1way |
Bayes Factor | > 2 | Fisher’s ANOVA | BayesFactor::anovaBF |
Parametric | 2 | Student’s or Welch’s t-test | stats::t.test |
Non-parametric | 2 | Mann–Whitney U test | stats::wilcox.test |
Robust | 2 | Yuen’s test for trimmed means | WRS2::yuen |
Bayesian | 2 | Student’s t-test | BayesFactor::ttestBF |
Effect size estimation
Type | No. of groups | Effect size | CI? | Function used |
---|---|---|---|---|
Parametric | > 2 | \(\eta_{p}^2\), \(\omega_{p}^2\) | ✅ | effectsize::omega_squared , effectsize::eta_squared |
Non-parametric | > 2 | \(\epsilon_{ordinal}^2\) | ✅ | effectsize::rank_epsilon_squared |
Robust | > 2 | \(\xi\) (Explanatory measure of effect size) | ✅ | WRS2::t1way |
Bayes Factor | > 2 | \(R_{Bayesian}^2\) | ✅ | performance::r2_bayes |
Parametric | 2 | Cohen’s d, Hedge’s g | ✅ | effectsize::cohens_d , effectsize::hedges_g |
Non-parametric | 2 | r (rank-biserial correlation) | ✅ | effectsize::rank_biserial |
Robust | 2 | \(\delta_{R}^{AKP}\) (Algina-Keselman-Penfield robust standardized difference) | ✅ | WRS2::akp.effect |
Bayesian | 2 | \(\delta_{posterior}\) | ✅ | bayestestR::describe_posterior |
Hypothesis testing
Type | No. of groups | Test | Function used |
---|---|---|---|
Parametric | > 2 | One-way repeated measures ANOVA | afex::aov_ez |
Non-parametric | > 2 | Friedman rank sum test | stats::friedman.test |
Robust | > 2 | Heteroscedastic one-way repeated measures ANOVA for trimmed means | WRS2::rmanova |
Bayes Factor | > 2 | One-way repeated measures ANOVA | BayesFactor::anovaBF |
Parametric | 2 | Student’s t-test | stats::t.test |
Non-parametric | 2 | Wilcoxon signed-rank test | stats::wilcox.test |
Robust | 2 | Yuen’s test on trimmed means for dependent samples | WRS2::yuend |
Bayesian | 2 | Student’s t-test | BayesFactor::ttestBF |
Effect size estimation
Type | No. of groups | Effect size | CI? | Function used |
---|---|---|---|---|
Parametric | > 2 | \(\eta_{p}^2\), \(\omega_{p}^2\) | ✅ | effectsize::omega_squared , effectsize::eta_squared |
Non-parametric | > 2 | \(W_{Kendall}\) (Kendall’s coefficient of concordance) | ✅ | effectsize::kendalls_w |
Robust | > 2 | \(\delta_{R-avg}^{AKP}\) (Algina-Keselman-Penfield robust standardized difference average) | ✅ | WRS2::wmcpAKP |
Bayes Factor | > 2 | \(R_{Bayesian}^2\) | ✅ | performance::r2_bayes |
Parametric | 2 | Cohen’s d, Hedge’s g | ✅ | effectsize::cohens_d , effectsize::hedges_g |
Non-parametric | 2 | r (rank-biserial correlation) | ✅ | effectsize::rank_biserial |
Robust | 2 | \(\delta_{R}^{AKP}\) (Algina-Keselman-Penfield robust standardized difference) | ✅ | WRS2::wmcpAKP |
Bayesian | 2 | \(\delta_{posterior}\) | ✅ | bayestestR::describe_posterior |
one_sample_test
Hypothesis testing
Type | Test | Function used |
---|---|---|
Parametric | One-sample Student’s t-test | stats::t.test |
Non-parametric | One-sample Wilcoxon test | stats::wilcox.test |
Robust | Bootstrap-t method for one-sample test | trimcibt (custom) |
Bayesian | One-sample Student’s t-test | BayesFactor::ttestBF |
Effect size estimation
Type | Effect size | CI? | Function used |
---|---|---|---|
Parametric | Cohen’s d, Hedge’s g | ✅ | effectsize::cohens_d , effectsize::hedges_g |
Non-parametric | r (rank-biserial correlation) | ✅ | effectsize::rank_biserial |
Robust | trimmed mean | ✅ | trimcibt (custom) |
Bayes Factor | \(\delta_{posterior}\) | ✅ | bayestestR::describe_posterior |
corr_test
Hypothesis testing and Effect size estimation
Type | Test | CI? | Function used |
---|---|---|---|
Parametric | Pearson’s correlation coefficient | ✅ | correlation::correlation |
Non-parametric | Spearman’s rank correlation coefficient | ✅ | correlation::correlation |
Robust | Winsorized Pearson correlation coefficient | ✅ | correlation::correlation |
Bayesian | Pearson’s correlation coefficient | ✅ | correlation::correlation |
contingency_table
Hypothesis testing
Type | Design | Test | Function used |
---|---|---|---|
Parametric/Non-parametric | Unpaired | Pearson’s \(\chi^2\) test | stats::chisq.test |
Bayesian | Unpaired | Bayesian Pearson’s \(\chi^2\) test | BayesFactor::contingencyTableBF |
Parametric/Non-parametric | Paired | McNemar’s \(\chi^2\) test | stats::mcnemar.test |
Bayesian | Paired | ❌ | ❌ |
Effect size estimation
Type | Design | Effect size | CI? | Function used |
---|---|---|---|---|
Parametric/Non-parametric | Unpaired | Cramer’s \(V\) | ✅ | effectsize::cramers_v |
Bayesian | Unpaired | Cramer’s \(V\) | ✅ | effectsize::cramers_v |
Parametric/Non-parametric | Paired | Cohen’s \(g\) | ✅ | effectsize::cohens_g |
Bayesian | Paired | ❌ | ❌ | ❌ |
Hypothesis testing
Type | Test | Function used |
---|---|---|
Parametric/Non-parametric | Goodness of fit \(\chi^2\) test | stats::chisq.test |
Bayesian | Bayesian Goodness of fit \(\chi^2\) test | (custom) |
Effect size estimation
Type | Effect size | CI? | Function used |
---|---|---|---|
Parametric/Non-parametric | Cramer’s \(V\) | ✅ | bayestestR::describe_posterior |
Bayesian | ❌ | ❌ | ❌ |
meta_analysis
Hypothesis testing and Effect size estimation
Type | Test | Effect size | CI? | Function used |
---|---|---|---|---|
Parametric | Meta-analysis via random-effects models | \(\beta\) | ✅ | metafor::metafor |
Robust | Meta-analysis via robust random-effects models | \(\beta\) | ✅ | metaplus::metaplus |
Bayes | Meta-analysis via Bayesian random-effects models | \(\beta\) | ✅ | metaBMA::meta_random |
See effectsize
’s interpretation functions to check different rules/conventions to interpret effect sizes:
https://easystats.github.io/effectsize/reference/index.html#section-interpretation
Although the primary focus of this package is to get expressions containing statistical results, one can also use it to extract dataframes containing these details.
For a more detailed summary of these dataframe: https://indrajeetpatil.github.io/statsExpressions//articles/web_only/dataframe_outputs.html
For parametric and non-parametric effect sizes: https://easystats.github.io/effectsize/articles/simple_htests.html
For robust effect sizes: https://CRAN.R-project.org/package=WRS2/vignettes/WRS2.pdf
For Bayesian posterior estimates: https://easystats.github.io/bayestestR/articles/bayes_factors.html
If you find any bugs or have any suggestions/remarks, please file an issue on GitHub: https://github.com/IndrajeetPatil/ggstatsplot/issues