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Abstract

High-throughput genotyping and large scale phenotyping produces massive amounts
of data. In this vignette, we present a novel R package named synbreed for the analysis
of such data to derive genome-based predictions. It contains a collection of functions
required to fit and validate genomic prediction models in plant and animal breeding. This
covers data processing, data visualization and data analysis. Thereby a versatile analysis
pipeline is established within one software package. All functions are embedded within the
framework of a single, unified data object. The implementation is flexible with respect to a
wide range of data formats and models. The package fills an existing gap in the availability
of software for next-generation genetics research. Where necessary, the package provides
gateways to other software programs to extend the field of applications. The utility of
the package is demonstrated in this document using three large-scale example data sets
provided by the synbreedData R package: a simulated data set representing a maize
breeding program, a publicly available mice data set and a dairy cattle data set.

Keywords: genomic prediction, quantitative genetics, pedigree-based relatedness, marker-
based relatedness, data processing, visualization.

1. Introduction

The analysis of quantitative traits is of paramount interest in agricultural genetics. For many
traits such as yield, quality or resistance against diseases and environmental stress we observe
continuously distributed phenotypes. According to quantitative genetic theory, these pheno-
types are determined by the joint action of many genes, the so called quantitative trait loci
(QTL), and the environment (Falconer and Mackay 1996). To understand the inheritance of
quantitative traits and to predict the unobservable genetic value of an individual are major
challenges of agricultural genetics. Recently, high-throughput genotyping technology deliv-
ering tens or hundreds of thousands of single nucleotide polymorphism markers (SNPs) has
become available for many crop and livestock species. The genomes of a large number of
individuals can now be analyzed for their specific marker profile at high density, which allows
estimating the proportion of genotype-sharing between them as well as efficient tagging of
QTL in segregation analyses. In breeding, selection of the best genotypes can be conducted
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on high-density marker profiles once sufficiently accurate genome-based prediction models
have been established. To achieve this, genomic prediction models are developed based on
large training populations for which genotypic and phenotypic data are available. Once the
best model is established, it can be used to predict the unobservable genetic value of selection
candidates based on their marker profile.

Research on genomic prediction (GP) will be advanced through the availability of compre-
hensive, user-friendly software that covers a wide range of analysis steps. In a recent review,
Heffner et al. (2009) state the urgent demand for such software to bring GP from theory to
practice. To provide a framework for the analysis of GP data, we developed a novel add-on
package named synbreed devised for the open-source software R (R Development Core Team
2011). Only an open source software package is flexible enough to keep pace with advanced
computational and methodological challenges. Our objectives in the design of the package
were (i) to provide user-friendly algorithms for non-trivial methods required in the analysis
of GP data, (ii) create an analysis framework using a single, unified data object resembling
a generic data structure which is suitable for a wide range of statistical methods employing
genotypic and phenotypic data such as GP, genome-wide association studies (GWAS) or QTL
mapping, (iii) provide the methods within one open-source software package to avoid data
conversion and transfer between software packages, (iv) to keep the implementation flexible
with respect to the data structure for plant and animal genetics, and (v) to provide a gateway
to other software and R packages to broaden the type of possible applications.

GP uses statistical models combining whole-genome data with phenotypic data. SNP effects
are estimated from a regression of the phenotype on the marker profile. However, with a dense
marker map, the model is over-parametrized. Typically, the number of SNPs p exceeds the
number of observations n. A solution is the usage of mixed models (Henderson 1984). Within
this framework, SNPs are used as direct predictors by modeling SNP effects or, alternatively,
they are used to estimate a marker-based relationship matrix between individuals (Habier
et al. 2007). The latter is used to model the variance-covariance structure for the genetic
values. Recently, different models using Bayesian regression models have become popular
(Meuwissen et al. 2001; de los Campos et al. 2009). The predictive ability of a model for
GP can be assessed using an out-of sample validation. If no independent test set is available,
cross-validation (CV) is used to exploit the predictive ability of a model (Legarra et al. 2008;
Albrecht et al. 2011).

Several software programs for genetics research, covering parts of the required methods, have
been released within the last years. The programs ASReml (Gilmour et al. 2009) and WOM-
BAT (Meyer 2007) provide restricted maximum likelihood (REML) estimation procedures for
linear mixed models with arbitrary variance-covariance structure. The program PLINK im-
plements algorithms for genome-wide association studies (GWAS) and identical-by-descent
estimation. However, these programs are not stand-alone. Within R, different packages
that tangent issues for GP are available: qtl for QTL analysis in experimental crosses (Bro-
man et al. 2003), GenABEL for GWAS and effective SNP data storage and manipulation
(Aulchenko and Struchalin 2010), genetics with classes and methods for handling genetic
data (Warnes et al. 2008) or BLR (Pérez et al. 2010) for genome-based prediction models
with Bayesian Ridge and Bayesian Lasso regression. However, there is no comprehensive
program covering the specific needs of genetic researchers to analyze GP data.

In this article, we present how the synbreed package streamlines the analysis of GP data.
The first part of the article summarizes the available data classes and functions. The sec-
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ond part shows by worked examples the application. The data management is guided by
a single, unified data object. This forms the basis for all functions including the coding of
the marker genotypes, algorithms to impute missing genotypes and linkage disequilibrium
analysis. Moreover, we provide functions to estimate coefficients of relatedness for individu-
als based on both pedigree or marker data. We provide several possibilities to visualize the
objects generated by the synbreed package. We give by simulated and real data examples for
the application of these functions. Mixed Models and Bayesian Regression models are used to
predict genetic effects. The predictive ability of the models is compared by CV. Both model
fit and validation using CV can be performed using the data object including genotypes and
phenotypes directly. Finally, we give the computational requirements for the analysis steps
and present possible extensions of the package.

2. Statistical models

In this section, we present the statistical models used for the prediction of genetic values of
individuals from a training set of individuals with phenotypes and pedigree or genotypes. We
assume, that for each individual ¢ = 1, ...,n a single phenotypic record is available. Moreover,
we consider a quantitative trait which can be modeled as being normal, i.e., y; = N(u+g;, 02).
By u, we denote the population mean and by o2 the residual variance. The unobservable
genetic value g; is predicted by statistical models using different data sources such as marker
genotypes or pedigree.

In the mixed model “P-BLUP”, the genetic values are predicted using the pedigree information
to construct a variance-covariance structure for the individuals. Following Henderson (1984),
this model is defined by

y=XB8+Za+e (1)

where y is the n x 1 vector of phenotypic records, 3 is the vector of fixed effects and a is a
n x 1 vector of random effects. Observations are allocated to the fixed and random effects by
the corresponding design matrices X and Z. Fixed effects typically include the population
mean and macro-environment effects such as location or year. Genetic values are samples
from a multivariate normal distribution

a~ N(0,Ac?)

where A is the additive numerator relationship matrix and o2 the additive genetic variance
(Falconer and Mackay 1996). The off-diagonal values of A are given by 2f;,;, for individuals
11 and i where — for a given pedigree — the coefficient of coancastry f; i, is computed by
the expected probability that two alleles are identical by descent (Lynch and Walsh 1998).
The diagonal value for individual ¢; is 1 + Fj, with Fj, being the inbreeding coefficient. The
n x 1 vector e denotes the residuals with e ~ N(0,I,02) and I,, is the n-dimensional identity
matrix. Best linear unbiased estimates (BLUE) for the fixed effects B and predictions for
the random effects (BLUP) a are obtained by solving the mixed model equations (MME)

(Henderson 1984)
Z'y

Estimates of the variance components 62 and 2 are obtained by REML estimation. A
prediction for the genetic value of individuals ¢ in the training set is given by a;.
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Genotypic data is incorporated in the mixed model “G-BLUP”. Here, the relationship matrix
based on pedigree is replaced by the genomic relationship matrix based on marker data. With
the genomic relationship matrix, random deviations from the expected relationship caused by
Mendelian sampling effects (Goddard et al. 2009) can be quantified. The following equation
for the genomic relationship matrix in a random mating population was proposed by Habier
et al. (2007)

(W—P)(W—P)T

230 pi(1-py)

where W is the marker matrix assigning p marker genotypes coded 0, 1 or 2 to n individuals.

P is a n x p matrix with two times the minor allele frequency p; for j = 1, ..., p replicated n
times within each column. The model “G-BLUP” is

U:

(2)

y=XB8+Zu+e (3)

with
u ~ N(0,Uc?)

where o2 is the genetic variance pertaining to model “G-BLUP”. The remaining parameters
are defined as in model “P-BLUP”. A prediction for the genetic value for individuals in the
training set is given by ;.
In the random regression model “RR-BLUP”, the phenotype is modeled as a function of the
individual SNP effects

y=X8+Wm+e (4)

where W is the n xp marker matrix and m the p-dimensional vector of SNP effects. We assume
that m ~ N(0,I02)) where o2, denotes the proportion of the genetic variance contributed by
each individual SNP. A prediction for the genetic value for individuals in the training set is
given by WiT m, where wj is the p-dimensional vector of marker genotypes of individual 1.
Predicted genetic values and variance components from model “RR-BLUP” are predictable
from model “G-BLUP” (Albrecht et al. 2011). It is computationally advantageous to use model
“G-BLUP” when n < p because computation times are of order O(n) and O(p), respectively.

The aforementioned models assume marker-homogeneous shrinkage of SNP effects. Meuwissen
et al. (2001) suggested alternative models with marker-specific shrinkage. In this spirit, de los
Campos et al. (2009) used Bayesian Lasso to predict SNP effects. Their model, denoted by
“BL”, is given by

y=X8+Wm+e (5)
All elements but m are defined as in “RR-BLUP”. The SNP effects m are modeled by marker-

specific prior distributions
m ~ N(0, To?)

with T = diag(73, ..., 7']-2, e Tp2) and the following model hierarchy

2 ~ Exp(\?),j=1,...p
A~ Gala,B)

e; ~ N(0,0%),i=1,..,n
a? ~ X1, 5%)
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For details of the hyperparameters see de los Campos et al. (2009). Parameter inference is
performed within a Bayesian framework. The joint posterior distribution cannot be evaluated
analytically in general. Hence Markov chain Monte Carlo (MCMC) methods are used to
generate samples from the full-conditional posterior distributions. Since all full-conditional
distributions are well-known distributions, a Gibbs-Sampler can be utilized to generate a
Markov chain (Park and Casella 2008). Prediction for the genetic value of individuals are
obtained like in model “RR-BLUP” as w; r.

The implementation of GP requires the prediction of the genetic performance g* = (g1, ..., gn<) "
of n* unphenotyped individuals. For model “RR-BLUP” and “BL”, the predicted genetic per-
formance is given by g* = X*B + W* T where X* denotes the design matrix for the fixed
effects and W* denotes the marker matrix for the unphenotyped individuals and m the predic-
tion of the SNP effects obtained from the training set. For “P-BLUP”, the joint relationship
matrix must be defined for all individuals in the training set and the prediction set. Pre-
dictions are obtained by solving the mixed model equation for the genetic values a* of the

unphenotyped individuals using the estimates of the variance-components of the training set

y:XB+(ZvQ0)<Z*>+e and <2*>NN<[8‘|7[2*T 2:*‘|U§> (6)

with Qg being a n X n* matrix with zeros and A the n x n additive numerator relationship
matrix for the individuals in the training set, A** the n* x n* additive numerator relationship
matrix for the unphenotyped individuals and A* the n x n* additive numerator relationship
matrix of the individuals in the training set with the unphenotyped individuals. Predictions
for the genetic performance are obtained by g* = X3 + a*. The same prediction scheme
is employed for “G-BLUP”. Here, the genomic relationship matrix substitutes the additive
numerator relationship matrix in Equation 6 and o2 is replaced by o2.

The out-of sample performance of a GP model determines the predictive ability. Cross-
validation is an assumption-free method to investigate the predictive ability of different mod-
els (Legarra et al. 2008). The data set is divided into k& mutually exclusive subsets, k — 1 of
them form the estimation set (ES) for model training. The kth subset is used as independent
test set (TS) for prediction. The predictive ability of a model is the correlation r(&rg, yrs)
of the vector of predicted genetic values §rg and the vector of observed phenotypes yrg of
the individuals in the T'S. Typically individuals are assigned randomly to TS and ES. How-
ever, different sampling strategies can be employed to account for population stratification.
Albrecht et al. (2011) used within and across family-sampling for biparental families. The
prediction bias can be assessed from a regression of the observed phenotype on the predicted
genetic value (Luan et al. 2009). A regression coefficient of 1 indicates an unbiased prediction,
a coefficient smaller than 1 implies inflation, a coefficient greater than 1 deflation of predicted
genetic values compared to the observed phenotypes.

3. The class gpData

Data for GP consists of multiple data sources. To simplify the flow and use of data, we
devised a data object named gpData (“genomic prediction Data”). Any object of class gpData
includes all data required for the analysis. The first step in an analysis using the synbreed
package is to create an object of class gpData. All additional functions utilize the predefined
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structure. Thus, it is sufficient to create once an object with the appropriate structure and
use this for further analysis. The elements are phenotypes, genotypes and pedigree for a set
of individuals. In addition, further elements for meta information on markers and individuals
can be defined. The different elements are concatenated by common names for individuals
and markers. They are used for data queries like in a data base. It is no prerequisite that
all elements comprise the same subset of individuals or markers. Hence it is possible, e.g.,
to include individuals with genotypes but no phenotypes in an object of class gpData. This
general structure is suitable for a wide range of data and models as employed by GP, GWAS
or QTL studies.

The advantage of a single, unified data object are manifold. When data is shared, a single
data file is easier to transfer than multiple files. By using basic summary methods, a first
overview over all elements is forthcoming. Within the facilities of R, an object of class gpData
is stored within the sparse binary format. For example, the claimed storage space for the mice
data, described later in this article, was reduced from 95Mb in ASCII format to 8Mb in binary
format. An object of class gpData can also be used as storage for multi-year experiments.
New phenotypic data can be added over years or locations. In the following sections, the
different elements of an object of class gpData and their required structure are described in
more detail.

3.1. Phenotypic data

Phenotypic data is the outcome of performance tests for a set of individuals evaluating one
or more traits. In plant breeding this can be the yield of a line evaluated in a field trial or
in dairy cattle breeding the milk fat content measured in progeny testing. The phenotypic
data are stored within the element pheno. This is an array with individuals organized in
the first dimension and the traits organized in the second dimension. In case of repeated
measurements for individuals, a third dimension can be used. For input, either a data.frame
or a array can be used. In all cases, the phenotypic data will be converted to an array.

3.2. Genotypic data

The genotypic data is stored in the element geno. This is the marker matrix with individuals
organized in rows and markers in columns. In the era of SNPs, functions for data processing
are limited to biallelic markers. Each entry of the marker matrix depicts the observed genotype
of an individual for a marker. Marker genotypes can either be distinguished by their names
(e.g., "AA", "BB" and "AB") or by the observed alleles (e.g., "A/C","A/T",...).

3.3. Pedigree

Pedigree information for individuals is stored in the element pedigree. The pedigree is a
table of individuals of the current generation and their ancestors. The pedigree is sorted by
generation, beginning with the individuals with unknown parents (coded as "0"). The content
is an object of class pedigree created by the function create.pedigree. An object of class
pedigree is a data.frame with at least four variables, ID, Parl, Par2, and gener for names
of individuals, Parent 1, i.e., sire, and Parent 2, i.e., dam, and generation, respectively. For
animals, an optional variable sex can be added.
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3.4. Covariate information

Additional information on individuals is stored in the element covar. This is a data.frame
with a column id with the names of individuals that appear in geno, pheno or pedigree. Two
automatically generated columns are added named phenotyped and genotyped. Both are
logical and identify the individuals that are phenotyped (observations in pheno) or genotyped
(observations in geno), respectively.

3.5. Marker map

The marker map is stored in element map of an object of class gpData. The map contains
meta information about the genetic or physical positions of the marker on the genome. More
precisely, the map is a data.frame with two columns named "chr" and "pos". The first
column identifies the chromosome (character or numeric) and the second is numeric indi-
cating the position of the marker on the genome. This can be the genetic position within the
chromosomes measured in centimorgan (cM) or the physical position relative to the reference
genome in base pairs.

3.6. Info

Element info is used internally for additional information such as the map unit.

Beside class gpData, several further object classes are defined within the synbreed package.
An overview over all available classes together with their elements as well as methods and
functions are given in Figure 1. More detailed information on the functions is given in the
next section.

4. Summary of functions

In this section, we present the main features of the synbreed package. Their application is
demonstrated by examples in Section 5. The preliminary step is to read-in raw data files in
the workspace, e.g., using function read.table.

4.1. Data processing

In all analyses using the synbreed package, the first step is to create an object of class gpData.
The function create.gpData merges the different raw data sources. The return value is a list
with elements covar, pheno, geno, map, pedigree and info. The function create.gpData
performs consistency checks on the data and returns an object of class gpData with the data
taken from the arguments. The basic call to create an object of class gpData is

R> gp <- create.gpData(covar,pheno,geno,map,pedigree)

An object of class gpData can be used as a data base with queries on individuals and markers.
With function discard.individuals, a subset of individuals can be excluded from the object
by removing the observations from covar, pheno, geno and pedigree. To add markers or
individuals to an object of class gpData, the functions add.markers and add.individuals
can be used. For subsequent analysis, other R packages often require a data.frame combining
response variable, i.e., the trait and the marker genotypes. An object of class gpData can
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crossVal gpMod
cvData < relationshipMatrix —> gpMod
- PredAbi - matrix - fit
- bias - model
summary - trainingSet
plot -y
summary write.relationshipMatrix g
crossVal -m
- kin
kin summary
gpMod predict
manhattanPlot
gpData
pedigree - covar
_ID - pheno
- Parl create.gpData = gene
- map
- Par2 .
- D > - pedigree
g cross2gpData - info .
(- sex) recode & impute
summary create.gpData
plot gpData2cross || discard.markers codeGeno
create.pedigree discard.individuals
simul.pedigree add.markers
add.individuals pairwiseLD
summary
summaryGenMap
plotGenMap
cross {qgtl} LDdf LDmat
- geno gpData2data.frame |- chrl -chr1
- pheno - data.frame - LP
summary - distance
plot LDDist
LDMap

Figure 1: Overview of object classes, methods and functions within the synbreed package.
Each box indicates a class together with the class name, the elements and the available
functions and methods. The arrows indicate the data flow. The origin indicates the input
argument and the head is the return value of the function.

be converted to a data.frame using function gpData2data.frame. The function merges
phenotypic and genotypic data. Multiple records for each individual result in additional
rows. The data.frame can be extended by ungenotyped or unphenotyped individuals. This
format applies to a variety of different functions in R. Moreover, we included functions for the
conversion from and to class cross in package qtl (Broman et al. 2003), see Figure 1.

The package synbreed provides several algorithms for the preprocessing of genotypic data.
The algorithms are condensed in the function codeGeno. The function evaluates the following
steps for the element geno within an object of class gpData.

1. Discard markers that exceed a given threshold for the fraction of missing values.
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2. Recode marker genotypes from arbitrary coding into the number of copies of the minor
allele, i.e., 0, 1 and 2 (see below).

3. Impute missing values according to different algorithms (see below).

4. Change the coding of minor and major allele whenever allele frequencies changed after
step 3.

5. Discard markers with a minor allele frequency (MAF) below a given threshold.

6. Discard duplicated markers, retain the first copy.

Depending on choice of arguments, not all steps are performed. A report can be printed on
the screen using argument verbose=TRUE. Below, we give more details on steps 2 and 3.

Step 2: Recode marker genotypes

Genotypic data in objects of class gpData can be raw marker data or output of other software,
e.g., from Illumina GenomeStudio (http://www.illumina.com/software/). Typically raw
genotypic data is either coded by marker genotypes, e.g., AA and BB for the homozygous geno-
types and AB for heterozygous genotypes for a locus phase or as pair of observed nucleotides,
e.g., A/A, A/T, G/T, ... . The order of the alleles is not of interest in GP. Nevertheless a com-
mon coding is required. This is in the synbreed package the number of copies of the minor
allele, i.e., 0, 1 and 2, for a single locus. Thus, homozygous marker genotypes are coded by
0 and 2 and heterozygous genotypes by 1. With this coding scheme the MAF for a marker j
can be computed as

n

> Wij

i=1

pj = m ’ ]: 17"'7p

where w;; is the marker genotype for individual ¢ and marker j. The heterozygous genotype
must be labeled unambiguously. This can either be done by a character which clearly defines
the heterozygous state (e.g., “AB” for genotypes “AA”, “AB” and “BB”) or a function to
identify them if multiple labels declare a heterozygous genotype (e.g., first allele # second
allele for A/A, A/T, G/T, ...). With this algorithm, it is straightforward to translate every
coding scheme into the number of copies of the minor allele. Some examples will be presented
in Section 5.

Step 3: Imputing of missing marker genotypes

Imputing of missing marker genotypes is often a necessary data preprocessing step. Indeed,
many methods used in the analysis of GP data require a marker matrix without missing
values. In function codeGeno missing values in the marker matrix can be replaced by one of
the following algorithms (controlled by the argument impute.type):

1. Missing values are replaced using family information for fully homozygous individuals
(Albrecht et al. 2011). This requires a biparental family structure with a uniform Sy
generation and a family size of at least 6 individuals. In the algorithm, a missing
observation 7 for a marker j in family [ is replaced according to the following rules: If
marker j is monomorphic in family [, the imputed value will be the observed allele. The
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assumption in this case is, that both parents are homozygous for the same allele. If
marker j is polymorphic in family [, the missing value is replaced from the following
distribution P(xﬁvA =0) = P(iU;-VA =2) =0.5.

2. The software Beagle (Browning and Browning 2009) can be used to infer missing geno-
types. Beagle uses a Hidden Markov Model to reconstruct missing genotypes based on
flanking markers. Function codeGeno creates a directory beagle for Beagle input and
output files, prepares input files and runs Beagle with default settings. The informa-
tion on marker position is taken from element map. By default, three genotypes 0, 1,
2 are imputed using the allele with the highest posterior probability. This information
is obtained from the Beagle output. In the special case of only homozygous genotypes,
values are 0 and 2 according to their “dosage”. The dosage is the estimated number of
copies of the minor allele by the Beagle software (Browning and Browning 2009).

3. A combination of the algorithms above can be used. In the first step, missing genotypes
are imputed according to the family information. Here, the algorithm 1 is used for
monomorphic markers and those with unknown position on the genome. In the second
step, the remaining genotypes are imputed using Beagle as in algorithm 2.

4. Missing values are sampled from the marginal allele distribution for each marker. This
algorithm does not take into account data stratification. Missing values are sam-
pled from {0,1,2} assuming a population in Hardy-Weinberg equilibrium (Falconer
and Mackay 1996). Thus P(azévA =0) = (1-p;)?, P(a:j-VA = 1) = 2p;(1 — p;) and
P(mév 4=9)= 3 In the special case of only homozygous genotypes, a missing value

:vjv 4 for marker j is replaced by a random draw from {0,2} using the probabilities

5. Replacing missing values by a given value.

We recommend the use of Beagle whenever a dense marker map is available and neighboring
markers can be exploited for imputation. This software package is state-of-the-art in plant
and animal breeding. However, if information from sufficiently sized families is available, the
accuracy of imputing can be increased by the usage of algorithm 3. This algorithm is also
suitable for genotypic data where the marker map is sparse.

4.2. Data analysis

Linkage disequilibrium

Linkage disequilibrium (LD) is defined as the non-random association of alleles at different
loci. The extent of LD is determined by recombination, mutation, random drift and selection
in population history. With genotypic data, LD can be calculated as the difference between
the observed and expected (assuming random distributions) allele frequencies. There are
many possibilities to compute LD from genotypic data, see Foulkes (2009) using the genetics
package. In the synbreed package, we use the measure 72 (Hill and Robertson 1968)
7"2 — Dgw
pv(l - pv)pw(l - pw) ’
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where Dy = Pyw — PuPuw and Py, Py and p,, are the frequencies of haplotype vw and allele
v at one locus and allele w at the other locus. Pairwise LD between markers on the same
chromosome can be computed using function pairwiseLD. For the general case, a gateway to
the software PLINK is established to estimate the LD. This requires that PLINK is available
(e.g. in the working directory). A fast within-R solution is available for marker data with
only 2 marker genotypes. The function has two different return value types: matrix and
data.frame. The first is a pairwise LD matrix and the latter a list with one row for each
marker pair. In both cases, results are returned chromosome-wise. Moreover, the Euclidean
distance of the markers based on the map is computed.

Estimation of relatedness

The synbreed package provides a unified function kin to compute pedigree-based (expected)
and marker-based (realized) coefficients of relatedness. As shown in Figure 1, coefficients are
estimated for a set of individuals within an object of class gpData. The return value is an
object of class relationshipMatrix. This is a symmetric matrix with pairwise coefficients
of relatedness for a set of individuals.

The computation of the pedigree-based relationship matrix in synbreed starts with the ga-
metic relationship matrix. This approach requires only few assumptions and is very flexible
with respect to special cases, i.e., homozygous inbred lines. Moreover, this computation can
be extended to include two populations and dominance effects. The gametic relationship
matrix is of dimension 2n X 2n with n being the number of individuals in the pedigree. The
matrix contains the probability that two gametes are identical by descent (IBD), denoted
by the equivalent symbol =. The gametes of an individual i; are denoted by X; and Xo,
the gametes of an individual is are denoted by Y; and Ys. All diagonal values equal 1. The
secondary diagonals contain the inbreeding coefficients F;, = P(X2 = X). Both additive and
dominance relationships may be obtained from the gametic relationship matrix according to
the rules in Schaeffer et al. (1989).

Pedigree-based coefficients of relatedness include additive (argument ret="add"), dominance
(argument ret="dom") and kinship (argument ret="kin"). The additive relationship coeffi-
cient between two individuals is obtained by the sum of the four corresponding entries of the
allele combinations in the gametic relationship matrix divided by 2. The additive relatedness
between individuals i1 and s is given by (Bernardo 2002)

1
2fi1i2 = 5 [P(Xl = Yl) + P(X1 = YQ) + P(Xg = Yl) + P(Xg = YQ)] .
The numerator relationship matrix described in Section 2 is constructed using all pairwise
coefficients 2f;,;, on the off-diagonal and 1+ F;, on the diagonal. The kinship between ¢; and
i9 is defined as f;4,.

For non-inbred individuals, the dominance coefficients are
tiliz = P(Xl = Yl) . P(XQ = }/2) —+ P(Xl = }/2) . P(X2 = Yl)

If genotypic data is available, a genomic relationship can be constructed based on marker data.
The matrix of genomic relationship coefficients is computed using function kin with argument
ret="realized". This requires an object of class gpData where the data in geno is coded
by the number of copies of the minor allele, i.e., by using function codeGeno. The genomic

11
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relationship matrix is computed according to Equation 2. Negative values indicate pairs of
individuals sharing fewer alleles than expected based on the allele frequencies and positive
values indicate pairs of individuals sharing more alleles than expected from the marginal
allele distributions. The denominator in Equation 2 is the correction term for a random
mating population (Habier et al. 2007). Corrections for other populations may be obtained
by multiplying the resulting matrix by a constant. See Albrecht et al. (2011) for an example
with homozygous inbred lines.

The genomic relationship can also be computed by the simple matching coefficient (Albrecht
et al. 2011). This is implemented with the argument ret="sm", but only for homozygous
inbred lines. To account for IBS but not IBD, Hayes and Goddard (2008) proposed the
correction (S—sSpmin)/(1—Smin) where s is the matrix of all pairwise simple matching coefficients
multiplied by 2 and sy, the minimum of all §(n — 1) values in s (argument ret="sm-smin"
within function kin).

Any object of class relationshipMatrix could easily be passed for further analysis to other
software packages. The function write.relationshipMatrix creates a table which could be
stored in an external file. Every row in the table depicts one element of the lower triangle.
The table is ordered by column names within row names which is the required format for
ASReml or by row names within column names which is the required format for WOMBAT.

Statistical models

The function gpMod provides a general interface to fit all models presented in Section 2.
The input argument is an object of class gpData. The training set for the model are all
individuals with phenotypes and genotypes (or pedigree for model “P-BLUP”). The mixed
models “P-BLUP” and “G-BLUP?” are fitted using the REML algorithm in function regress
implemented in the package regress (Clifford and McCullagh 2012). Model “RR-BLUP” is
derived from model “G-BLUP” using the functional relationship between the models. In this
case, in the first step “G-BLUP” is fitted and then the mixed model equations are solved for the
SNP effects. The Bayesian regression models are fitted using the Gibbs-Sampler implemented
in the BLR package (Pérez et al. 2010). The variance-covariance structure in the BLUP
models “P-BLUP” and “G-BLUP” is defined within the argument kin by an object of class
relationshipMatrix, see Figure 1. The data for model training consists of all individuals
with phenotypes and genotypes. All data are restricted to individuals from the training set.
We include the "..." argument to allow a subtle adjustment of the model control. This
includes the choice of hyper-parameters and MCMC options for “BL”.

For all models, the function gpMod reports the names of all individuals in the training set
together with their predicted genetic performance and phenotype. For the models “RR-BLUP”
and “BL” additional predicted SNP effects are returned. Moreover, the model output of the
used function, i.e., regress or BLR is returned. An summary method is available for objects
of class gpMod. It summarizes the number of observations in the training set and a summary
for the predicted genetic performance of the individuals in the training set. Furthermore, we
provide a predict method for the class gpMod. If all individuals are phenotyped, it returns
the predicted genetic performance of the individuals in the training set. To predict the genetic
performance of unphenotyped individuals with the models “RR-BLUP” or “BL”, an object of
class gpData containing the genotypic data must be passed to the predict method. To predict
unphenotyped individuals with “P-BLUP” or “G-BLUP”, their coefficients of relatedness must
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be included in the variance-covariance structure.

Cross-validation

CV for different GP models is implemented in function crossVal. Possible models include
mixed models and Bayesian regression models. To account for population stratification, dif-
ferent sampling strategies may be employed. Thereby in most cases the population structure
will represent families or the age-group in animal breeding. The sampling strategies are

random Random sampling of the complete data set.

within popStruc Each group is splitted into k subsets to investigate within group predictive
ability.

across popStruc The ES and TS contains only complete groups for across group predictive
ability.

The function crossVal returns an object of class cvData. This is a 1list of predicted genetic
performance and observed phenotypic values for all &k - r test sets. Moreover, the list includes
individuals, size, predictive abilities and bias for each corresponding T'S.

4.3. Data summary and visualization

In this section we present the different possibilities to visualize objects in the synbreed pack-
age and provide graphical or textual summaries. Thus key features of the high-dimensional
objects can be assessed. For objects of class gpData, the summary method reveals general
information about all elements. This includes the number of genotyped and phenotyped in-
dividuals, summary statistics (0, 25, 50, 75 and 100% quantiles and mean) for the traits,
number of markers, marker genotype frequencies and the summary for the pedigree. The
summary method for an object of class pedigree includes number of individuals, parents and
generations. The summary method for objects of class relationshipMatrix indicates the
dimension, rank, range and number of unique values. The summary method for objects of
class cvData provides information on the employed sampling scheme. Results are summa-
rized by the minimum, mean and maximum of the predictive ability and bias across all test
sets together with an estimated standard error for the mean pooled over the k subsets.

The LD is visualized chromosome-wise. A LD heatmap is available using function LDMap.
This function is a wrapper to apply the function LDheatmap of the package LDheatmap
(Shin et al. 2006) for an object of class gpData. The LD must be organized in the matrix-
format of function pairwiseLD. The function LDDist visualizes LD decay as scatterplot or
stacked histogram. This requires the LD organized in the data.frame format. In the stacked
histogram, the LD is visualized with bars representing fractions of SNP pairs. Breaks for
the distance and LD level are controlled by the user. Moreover, a nonlinear regression curve
according to Hill and Weir (1988) can be added to the scatterplot.

A plot method is available for objects of class pedigree and relationshipMatrix. The
pedigree structure is visualized by a directed graph. One line is representing a generation
with a vertex for each individual. Objects of class relationshipMatrix are visualized using
a heatmap representation. Estimated SNP effects of an object of class gpMod can be visualized
using a “Manhattan” plot. This is implemented in function manhattanPlot.

13
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Genome-wide dense marker maps require new types of visualization. The function plotGenMap
provides layouts for small (< 200 markers/chromosome) and high numbers of markers. In
both cases, each chromosome is represented as a vertical bar. The length of the bar is given
by the distance between the first and the last marker on the chromosome. For a sparse map,
each marker is plotted as a horizontal bar. With a dense map, only the marker density is
evaluated within equally-spaced intervals. The bandwidth for the intervals is controlled by
the user. Within each interval, the number of markers is counted and visualized by a color
image. In addition, function summaryGenMap returns a summary of the marker distances. This
includes the number of markers, minimum, mean and maximum distances between markers
by chromosome and over all chromosomes.

5. Examples

5.1. Data sets

In this section, the application of the synbreed package is demonstrated using the data from
the synbreedData package. The synbreedData is included as a dependency in the synbreed
package.

Simulated maize data

This simulated data resembles the output from a typical maize breeding program based on
doubled haploid (DH) lines. A DH is produced by sampling gametes from heterozygous S
plants. Thus, a DH line received both gametes from a single parent and is fully homozygous.

Ten chromosomes of length 160 cM are simulated. True genetic values are sampled from
K = 500 segregating, biallelic QTL with equal additive effects assuming absence of dominance
and epistasis

K
g9; = ZQTLUm 1= 1, N
k=1

where QT L;;. is the effect of the k-th QTL allele for individual . Phenotypic values are
simulated by adding a random environmental residual. Thus the underlying genetic model is

Yi=¢i+e,i1=1..n
where e¢; = N(0,0%). Genotypic and phenotypic data was simulated for 1250 DH lines.
Moreover, pedigree for additional 360 ancestor individuals is available. These ancestors can
be heterozygous. The 1250 DH lines belong to 25 biparental families with 50 lines in each

family. The maize data can be loaded within the synbreed package using

R> library("synbreed")
R> data("maize")

A basic overview over the contents of the gpData is available through

R> summary (maize)
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object of class 'gpData

covar
No. of individuals 1610
phenotyped 1250
genotyped 1250
pheno
No. of traits:
Trait
Min. :120.7
1st Qu.:142.8
Median :148.9
Mean :148.9
3rd Qu.:154.9
Max. :181.8
geno
No. of markers 1117
genotypes 0 1
frequencies 0.339995 0.660005
NA's 0.000 %
map
No. of mapped markers 1117
No. of chromosomes 10
markers per chromosome
1 2 3 4 5 6 7 8 9 10
76 96 99 122 85 106 154 130 121 128
pedigree
Number of
individuals 1610
Par 1 219
Par 2 221

generations 15

15

Genotypic data in element geno comprises 1117 polymorphic SNP markers. The distribution
of markers across the chromosomes is visualized in Figure 2(a) using function plotGenMap (maize).
Phenotypic data was simulated for the quantitative trait yield [dt/ha], evaluated in testcrosses
of DH lines in 3 locations. Figure 2(b) shows a histogram of average testcross performance of
the 1250 DH lines.

Mice data

The mice data set was recently used to illustrate prospects of GP (Legarra et al. 2008; Lee
et al. 2010). The data is publicly available from http://gscan.well.ox.ac.uk and comprises


http://gscan.well.ox.ac.uk
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Figure 2: Simulated maize data with 1250 DH lines and 1117 polymorphic SNP markers. (a)
Marker map with marker positions in ¢cM and number of markers below chromosome bars.

The plot is created using plotGenMap. (b) Histogram of phenotypic trait values for testcrosses
of DH lines.

data of 2527 mice. They are progenies from eight inbred strains followed by 50 generations
of pseudorandom mating. Original data comprises several qualitative and quantitative traits.
See the website or Valdar et al. (2006) for more details on this data set. The data can be
loaded using

R> data("mice")

Genotypic data in element geno consists of 12545 SNP markers. Marker data is available
for a subset of 1940 individuals. The marker map in element map is the sex-averaged genetic
map with distances given in cM. See Figure 3(a) for a visualization of the marker map using
plotGenMap(mice, TRUE,FALSE,ylab="pos [cM]"). Element pheno comprises two quantita-
tive traits for 2527 mice: the body weight at 6 weeks age [g] and growth slope between 6
and 10 weeks age [g/day]|. The distribution of both traits is shown in Figure 3(b). Pedigree
information is not yet available from the website. The element covar includes the variables
sex (females=0, males=1), month of birth (1-12), birth year, coat color, cage density and
litter.

Dairy cattle data

This data set contains genotypic, phenotypic, map and pedigree data of 500 bulls. Genotypic
and pedigree data are taken from real cattle data while phenotypes are simulated. The
cattle data was provided by the Animal Breeding and Genetics group of Henner Simianer,
Georg-August-Universitéit Gottingen. The data can be loaded using

R> data("cattle")
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Figure 3: Publicly available mice data. (a) Visualization of the marker map comprising in
total 12545 SNP markers along 19 autosomes and the X-chromosome using plotGenMap. (b)
Histograms for univariate distribution of traits weight and growth slope for 2527 mice and
scatterplots for the bivariate distribution and the correlation coefficient.

Two quantitative traits are available with simulated heritabilities of 0.41 and 0.66, respec-
tively. The distribution of both traits is shown in Figure 4(b). Genotypic data consists of 7250
biallelic SNP markers for every phenotyped individual with missing data included. SNPs are
mapped across all 29 autosomes. Distances in the SNP map are given in mega bases (Mb). See
Figure 4(a) for a visualization of the marker map using function plotGenMap. The pedigree
information is available at least on parents and grandparents of the phenotyped individuals.

5.2. Data processing and visualization

All data sets are already given as objects of class gpData. Hence the next step is the processing
of the genotypic data in element geno. The maize data includes no missing values. Thus
data processing only involves the recoding of the alleles into the number of copies of the
minor allele. There are only homozygous genotypes. Hence no heterozygous genotype must
be declared and genotypic data is recoded by

R> maizeC <- codeGeno (maize)

Resulting object maizeC is again of class gpData but with recoded genotypic data. This
information is stored for further analysis as codeGeno sets maizeC$info$codeGeno=TRUE.
When there are heterozygous genotypes, the argument label.heter is required. This is
shown for the mice data, where genotypes are coded by the observed alleles separated by a
slash symbol. A heterozygous genotype is identified whenever the first allele differs from the
second allele. This can be generalized by the function

R> is.heter <- function(x) {

17
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Figure 4: Description of the cattle data. (a) Visualization of the marker map comprising in
total 7250 SNP markers along 29 autosomes using plotGenMap. (b) Histograms for univariate
distribution of traits 1 and 2 for 500 bulls and scatterplots for the bivariate distribution and
the correlation coefficient.

+ substr(x, 1, 1) != substr(x, 3, 3)
+ 7}

The function is.heter checks for unequal alleles at a locus to identify heterozygous genotypes.
It is passed to the function codeGeno by the argument label.heter.

R> miceC <- codeGeno(mice, label.heter = is.heter)

The function codeGeno enables a preselection of markers and the imputing of missing values.
For the following analysis, we choose a threshold for the MAF of 0.05 and of 0.01 for the
fraction of missing values. All SNPs failing these criteria are discarded from the object of
class gpData. Missing values are sampled from the marginal marker allele distribution. The
corresponding call and verbose output is

R> miceC <- codeGeno(mice, label.heter = is.heter, impute = TRUE,
+ impute.type = "random", maf = 0.05, nmiss = 0.01, verbose = TRUE)

step 1 : 400 marker(s) removed with > 1 % missing values
step 2 : Recoding alleles
step 2.1: No duplicated markers discarded
step 3d : Random imputing of missing values
approximate run time 17.82 seconds
step 4 : No recoding of alleles necessary after imputation
step 5 : 2148 marker(s) removed with maf < 0.05
step 6 : No duplicated markers discarded
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End : 9997 marker(s) remain after the check

Summary of imputation
total number of missing values : 23627
number of random imputations 1 23627

Recoding of the cattle data can be performed according to the mice data using argument
label.heter="AB".

In the next step, the pairwise LD for markers on chromosome 1 of maize is computed using the
within-R solution for homozygous genotypes. We choose type="data.frame" and visualize
the LD with the function LDDist.

R> maizelD <- pairwiseLD(maizeC,chr=1,type="data.frame")

The LD decay for the LD data in the object maizeLD is shown in Figure 5. This plot can be
generated using

R> LDDist (maizelD, type="p",xlab="dist [cM]",pch=19,col=hsv(alpha=0.075,v=0))
for the scatterplot and

R> LDDist (maizeLD, type="bars",breaks=1ist (dist=c(0,25,50,75,200),
+ 1r2=c(1,0.5,0.3,0.2,0.1,0.05,0)) ,xlab="dist [cM]")

for the stacked histograms with user-specified breaks. The graphical layout is controlled
by specifying additional graphical parameters. The LD for the recoded mice data may be
obtained using the PLINK software invoked by the argument use.plink=TRUE.
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Figure 5: LD decay as a scatter plot (left side) and stacked histogram (right side) for 76
markers on the first chromosome for the maize data.

5.3. Data analysis

In the following, different coefficients of relatedness are calculated for the individuals. Pedigree-
based coefficients are only inferred for the maize data. All genotyped individuals are DH lines
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having an inbreeding coefficient of 1. When using function kin, the special argument DH iden-
tifies DH lines in the data. For a DH line i1, F;, = P(X; = X32) is set to 1 by the algorithm. In
the maize data a variable DH in element covar indicates DH lines. The additive relationship
matrix for all individuals in the pedigree is computed by

R> A <- kin(maize,ret="add",DH=maize$covar$DH)

The additive relationship matrix for the general case is obtained by omitting the argument
DH. A summary of the relationship matrix is obtained by

R> summary (A)

dimension 1610 x 1610
rank 1460

range of off-diagonal values O -- 1.757812
number of unique values 1435

range of diagonal values 1 --2

Genomic relationship coefficients can be computed using the recoded marker matrix.

R> U <- kin(maizeC,ret="realized")
R> summary (U)

dimension 1250 x 1250

rank 1108

range of off-diagonal values -0.8803719 -- 2.10971
number of unique values 686708

range of diagonal values 1.467 -- 2.964

Resulting matrix U is the genome-based analogon for A. The difference in expected and realized
relationship matrices can be visualized using the heatmap visualization, see Figure 6. Note
that only the 1250 genotyped individuals in A instead of all 1610 individuals are presented.
Hence expected and realized relationship can be compared directly. The individuals were
selected using the column genotyped in element covar to query only rows and columns in A
for genotyped individuals.

R> plot (A[maize$covar$genotyped,maize$covar$genotyped])
R> plot(U)

The DH lines in the maize data are sorted by their family number. Thus the heatmap in
Figure 6(a) is structured as 25 x 25 squares. Pedigree-based coefficients indicate no difference
within families but differ across families. In contrast, the marker-based relationship reveals
random Mendelian sampling effects within families. Thus, the heatmap provides a higher
resolution for the coefficients.

5.4. Statistical models

In this section, we fit statistical models to predict genetic values for the individuals in the
mice and maize data. Model performance is assessed by cross-validation.
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(a) Pedigree-based relationship

Figure 6: Comparison of pedigree-based (expected) relationship matrix and marker-based
(realized) relationship for the 1250 genotyped individuals in maize data. Visualized are the

heatmaps of pairwise relationship coefficients.

For the mice data, model “G-BLUP” is fitted for the trait weight. The model includes a
random genetic effect and the population mean p as fixed effect. The covariance structure for

(b) Marker-based relationship

the genetic values is given by the realized relationship matrix. This is obtained by

R> UM <- kin(miceC,ret="realized")

The model is fitted using the function gpMod

R> miceGBLUP <- gpMod(miceC,model="BLUP",kin=UM, trait="weight")

The resulting object miceGBLUP is of class gpMod. A summary of the model fit is obtained by

R> summary (miceGBLUP)

Object of class 'gpMod'
Model used: BLUP

Nr. observations 1928

Genetic performances:

Min. 1st Qu. Median Mean 3rd Qu. Max
-4.72400 -1.01600 -0.09459 -0.01184 0.96120 5.17200
Model fit
Likelihood kernel: K = (Intercept)

Maximized log likelihood with kernel K is -3178.055

21
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Linear Coefficients:
Estimate Std. Error
(Intercept)  20.344 0.065

Variance Coefficients:
Estimate Std. Error
kinTS 3.704 0.498
In 8.069 0.311

Estimates for the SNP effect may be obtained using “RR-BLUP” through
R> miceRRBLUP <- gpMod(miceC,model="BLUP",kin=UM, trait="weight" ,markerEffects=TRUE)

Note that in this case the variance components pertaining to model (4), i.e. o2, rather than
2 is reported. The model “RR-BLUP” uses marker-homogenous shrinkage. As a contrasting
model, “BL” is employed which uses marker-specific shrinkage. Values for the prior distribu-

tion of 02 and \ are determined using the equations of Pérez et al. (2010).

g

R> prior <- list(varE = list(df = 3, S = 40), lambda = list(shape = 0.8,
+ rate = 1e-04, value = 52, type = "random"))

R> miceModBL <- gpMod(miceC,model="BL",trait="weight",
+ prior=prior,nlter=12000,burnIn=2000,thin=10)

A summary of the model fit may be obtained using

R> summary (miceModBL)

Object of class 'gpMod'

Model used: BL

Nr. observations 2511

Genetic performances:
Min. 1st Qu. Median Mean 3rd Qu. Max
15.61 19.33 20.25 20.33 21.31 25.54

Model fit

MCMC options: nIter = 12000, burnIn = 2000, thin = 10

Posterior mean

(Intercept) 18.91775

VarE 8.116326

lambda 128.6805

The summary reveals only marginal differences compared to the mixed model “G-BLUP”. A
“Manhattan” plot of the predicted marker effects is shown in Figure 7.

The estimated SNP effects of “BL” are used to predict the genetic performance of the 12
individuals with a missing value for weight. First, a new object of class gpData is created
including the marker genotypes of the individuals of the prediction set.
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Figure 7: Predicted SNP effects |m| for the trait weight in mice data using “BL”.

R> unphenotyped <- dimnames (mice$pheno) [[1]][is.na(mice$pheno[,1,])]
R> phenotyped <- mice$covar$id[!mice$covar$id /inj, unphenotyped]

R> predSet <- discard.individuals(miceC,phenotyped)

Predictions for the genetic performance are obtained by

R> predict (miceModBL, predSet)

The predictive performance of the mixed model is judged by CV. Here, we use 2-fold CV
as in Legarra et al. (2008). The splitting into TS and ES is repeated 10 times. Individuals
are assigned randomly to TS and ES. For computational ease, the variance-components are
estimated once for the complete data set and committed to model training in CV. This CV
scheme may be employed using

R> cv.mice <- crossVal (miceC,cov.matrix=1ist (UM),k=2,Rep=10,Seed=123,
+ sampling="random",varComp=miceGBLUP$fit$sigma,VC.est="commit")

A summary of the CV is obtained by

Object of class 'cvData'

2 -fold cross validation with 10 replication(s)

Sampling: random
Variance components: committed
Number of random effects: 1
Size of the TS: 964 -- 964
Results:
Min Mean +- pooled SE Max
Predictive ability: 0.2916 0.3697 +- 0.009471 0.4323

Bias: 0.6830 0.9927 +- 0.02621 1.2195
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Seed start: 123
Seed replications:
[1] 28758 78831 40898 88302 94047 4557 52811 89242 55144 45662

The mean of the predictive ability is 0.37 using random sampling. Legarra et al. (2008)
reported values of 0.25 for across family sampling and 0.67 for within family sampling but of
a different subset of the mice data. Moreover, they included a cage effect in the model.

For the maize data, we compare the predictive ability of the pedigree-based model “P-BLUP”
with the genome-based models “GBLUP” and “BL”. Because phenotypic performance is eval-
uated as testcrosses of DH lines, the relationship matrix must be replaced by the kinship
matrix (Albrecht et al. 2011). Thus, relationship matrices are divided by 2. The models are
fitted by

R> PBLUP <- gpMod(maizeC, model
R> GBLUP <- gpMod(maizeC, model "BLUP", kin Uu/2)

R> prior <- list(varE = list(df = 3, S = 35), lambda = list(shape = 0.52,
+ rate = le-04, value = 20, type = "random"))

R> modBL <- gpMod(maizeC, model = "BL", prior = prior, nlter = 6000,

+ burnIn = 1000, thin = 5)

"BLUP", kin = A/2)

Convergence of the Markov chain for modBL was examined visually. No convergence problems
were observed. The model performance is measured by the predictive ability r(&rs,yrs)
from CV. The accuracy is defined as the correlation of the predicted genetic value with true
breeding values r(g, g) for the whole data set. We use 5-fold CV with 10 replications. The
results are summarized in Table 1. The models using marker data outperform the pedigree-
based model “P-BLUP”. However, the average predictive ability of “BL” using marker-specific
shrinkage is similar compared to “G-BLUP” using marker-homogeneous shrinkage.

Model cross-validation r(g, g)
7(&rs,yrs) (s.e.) avg. bias (s.e.)

P-BLUP 0.22 (0.002) 1.00 (0.013) 0.587
G-BLUP 0.53 (0.002) 1.00 (0.007) 0.856
BL 0.53 (0.002) 1.01 (0.006) 0.856

Table 1: Comparison of the model performance of pedigree-based mixed model “P-BLUP”,
marker-based mixed model “G-BLUP”, and Bayesian Lasso regression “BL” with respect to
the predictive ability, the prediction bias and the accuracy.

5.5. Computation times

A crucial point in GP are computation times. In this section, we evaluate the computational
requirement for the algorithms implemented within the synbreed package. The scaling with
respect to the number of data points can be roughly assessed by a comparison of the maize
and mice data. The number of data points in the marker matrices are 1250 - 1117 ~ 1.4 - 107
and 1940 - 12545 ~ 2.4 - 108, respectively. We list in Table 2 the elapsed system times on a
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standard PC (Intel Core 2, 2.8 Ghz, 4 GB RAM). To impute with the maize data, a fraction
of 0.444% of the marker genotypes was masked. This corresponds to the number of missing
data points in the marker matrix of the mice data.

25

Computation Times [sec]

Analysis step Function maize data  mice data
Load data load 0.6 9.4
Summary summary .gpData 3.0 6.2
Plot marker map plotGenMap 0.4 0.2
Recoding genotypes codeGeno 5.8 68.3
Imputing genotypes ("random") codeGeno 5.9¢ 71.9
Imputing genotypes ("Beagle") codeGeno 67.0% 2695.8
Imputing genotypes ("family") codeGeno 9.0¢ NA
Imputing genotypes ("beagleAfterFamily") codeGeno 67.26% NA
Pairwise LD (only Chr. 1) pairwiseLD(, chr=1) 24 679.7
Pedigree-based relationship kin(,ret="add") 137.8 NA
Marker-based relationship kin(,ret="realized") 1.2 47.2

Table 2: Elapsed system times (seconds) for the analysis steps using the synbreed package.
@ after randomly masking 0.444% values, NA=computation not possible because no pedigree
is available.

We observed, that the computation times for many algorithms scale linearly with the number
of data points. For a 50k SNP chip and 1000 individuals the recoding of the alleles is per-
formed in less than 5 minutes on a standard PC. The marker-based matrix is computed within
the same time frame. The model “G-BLUP” can be fitted in less than a minute. Hence, pre-
dictions for the genetic value are available in only a few minutes. However, additional analysis
steps such as CV - depending on the number of splits and replications - are computation-
ally intensive. Imputing of missing values using Beagle is very accurate but slow for a dense
genome-wide marker map. For a family-stratified population of homozygous inbred lines the
"family" algorithm is a faster alternative.

6. Conclusions and future work

The package synbreed provides a valuable tool within the plant and animal genetics re-
searchers software toolbox. It offers a comprehensive collection of methods required in the
analysis of GP data. The data flow is guided by a single, unified data object. Once an ob-
ject of class gpData is created, all analysis steps rely on its structure. Moreover, it is very
convenient to share objects of class gpData. A key issue is the generality of the class gpData.
We minimized the requirements concerning the data structure. This includes replicated and
unreplicated trials for phenotypic data as well as arbitrary coding of marker data either by
alleles or marker genotypes. Consequently, the package can also be applied in GWAS or QTL
studies. For the latter, we included a gateway to the package qtl. The synbreed package is
implemented as generic as possible. Hence, the package is suitable for both plant and animal
genetics researchers and not limited to any species. We have successfully tested this frame-
work for the analysis of several scenarios with simulated and experimental data from different
species (maize, rye, dairy cattlen, rice and Arabidopsis).

Next generation genetics research involves computer-intensive methods to analyze massive
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amounts of high-throughput genotyping and large scale phenotyping data. Especially in the
plant breeding community, there is a strong demand for robust standard software. We de-
signed this package to provide access to standard methods required in GP. The synbreed
package provides an interface to fit robust standard parametric GP models being publicly
available. This allows researchers to conduct standard analyses, e.g., using mixed models.
Moreover, the framework of R enhances the analysis and visualization of results in one soft-
ware. All code is given in the R language. This permits the users to customize the methods
to specific needs. When necessary, we provide gateways to standard software such as Beagle
or Plink. Beside research and routine analysis, the package is also useful in the education of
young scientists and breeders. It provides fast access to a wide range of different analysis
methods and a hand-on tutorial with example data sets. Most functions have default val-
ues and short argument lists. Thus graduate students can gain expeditious insight into the
statistical models and apply GP methods without having profound programing skills.

One objective of the synbreed package was to create a gateway to related software programs.
Thereby we utilize the strength of R to integrate functions by the package structure. We pro-
vide an interface to fit GP models using the mixed and Bayesian regression models. The model
performance can be investigated using cross-validation. The function gpData2data.frame al-
lows the conversion to a data.frame. This comprehensive format can be used by many other
R functions. Other software packages such as ASReml or WOMBAT are frequently used in
genetics and breeding research. An object of class relationship matrix can be stored as a
file using function write.relationshipMatrix which meets the required formats for ASReml
or WOMBAT. Thus data in synbreed package can be used straightforward by other software.
Moreover, we included functions to prepare the input files for the programs Beagle and P1ink.
We provide an interface to use the methods therein for objects of class gpData. Combining
the functionality of R with Sweave (Leisch 2002) and IXTEX enables to create automatic re-
ports presenting results for e.g., predicted genetic performance and SNP effects within tables
and graphics. This is a step towards automatized analysis pipelines in the analysis of next
generation genotype and phenotype data.

There is no universal constraint in the synbreed package with respect to the number of
data points. Rather computational facilities impose limitations. Table 2 gives an overview
of computation times for both data sets. Various analysis steps are performed in seconds.
In general, the elapsed time increases linearly with respect to the number of data points.
However, as data output from next generation sequence technology is emerging faster than
computational capacities, additional effort is required to improve the algorithms. The open-
source structure of R allows the user to customize the algorithms. Solutions can be the use
of parallel computing utilizing the power of multi-core systems (Schmidberger et al. 2009).
Hence, computation times are likely to be reduced by an order of magnitude, especially on a
multi-core cluster. The claimed workspace can be reduced by using sparse matrix methods
(e.g., R package ff, Adler et al. (2010)). The current version of the package enables genotype-
based analyses. However, using haplotypes is desirable, too. For the future, we are aiming
to include an additional data object for haplotyes and provide tools to analyze them. As
available amount of data points are expected to increase, future work will also include the
embedding of foreign languages, i.e., C.
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