The traineR
package seeks to unify the different ways of creating predictive models and their different predictive formats. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines, Bayesian, Linear Discriminant Analysis, Quadratic Discriminant Analysis and Logical Regression.
The main idea of the package is that all predictions can be execute using a standard syntax, also that all predictive methods can be used in the same way by default, for example, that all packages are use classification in their default invocation and all methods use a formula to determine the predictor variables (independent variables) and the response variable.
For the following examples we will use the Puromycin
dataset:
conc | rate | state |
---|---|---|
0.02 | 76 | treated |
0.02 | 47 | treated |
0.06 | 97 | treated |
0.06 | 107 | treated |
0.11 | 123 | treated |
0.11 | 139 | treated |
0.22 | 159 | treated |
0.22 | 152 | treated |
0.56 | 191 | treated |
0.56 | 201 | treated |
n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.7)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]
Modeling:
#>
#> Call: glm(formula = state ~ ., family = binomial, data = data.train)
#>
#> Coefficients:
#> (Intercept) conc rate
#> 2.29849 2.55722 -0.02734
#>
#> Degrees of Freedom: 15 Total (i.e. Null); 13 Residual
#> Null Deviance: 21.93
#> Residual Deviance: 20.26 AIC: 26.26
Prediction as probability:
Note: the result is always a matrix.
#> treated untreated
#> [1,] 0.6863659 0.3136341
#> [2,] 0.8163233 0.1836767
#> [3,] 0.8538404 0.1461596
#> [4,] 0.2778341 0.7221659
#> [5,] 0.4612626 0.5387374
#> [6,] 0.6374826 0.3625174
#> [7,] 0.6432216 0.3567784
Prediction as classification:
Note: the result is always a factor.
#> [1] treated treated treated untreated untreated treated treated
#> Levels: treated untreated
Confusion Matrix
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 2 2
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 2 2
#>
#> Overall Accuracy: 0.7143
#> Overall Error: 0.2857
#>
#> Category Accuracy:
#>
#> treated untreated
#> 1.000000 0.500000
Modeling:
#> Call:
#> ada(state ~ ., data = data.train, iter = 200)
#>
#> Loss: exponential Method: discrete Iteration: 200
#>
#> Final Confusion Matrix for Data:
#> Final Prediction
#> True value treated
#> treated 9
#> untreated 7
#>
#> Train Error: 0.438
#>
#> Out-Of-Bag Error: 0.438 iteration= 6
#>
#> Additional Estimates of number of iterations:
#>
#> train.err1 train.kap1
#> 1 1
Prediction as probability:
#> treated untreated
#> [1,] 0.5625 0.4375
#> [2,] 0.5625 0.4375
#> [3,] 0.5625 0.4375
#> [4,] 0.5625 0.4375
#> [5,] 0.5625 0.4375
#> [6,] 0.5625 0.4375
#> [7,] 0.5625 0.4375
Prediction as classification:
#> [1] treated treated treated treated treated treated treated
#> Levels: treated untreated
Confusion Matrix:
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 4 0
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real treated untreated
#> treated 3 0
#> untreated 4 0
#>
#> Overall Accuracy: 0.4286
#> Overall Error: 0.5714
#>
#> Category Accuracy:
#>
#> treated untreated
#> 1.000000 0.000000
For the following examples we will use the iris
dataset:
Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
---|---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 | setosa |
4.9 | 3.0 | 1.4 | 0.2 | setosa |
4.7 | 3.2 | 1.3 | 0.2 | setosa |
4.6 | 3.1 | 1.5 | 0.2 | setosa |
5.0 | 3.6 | 1.4 | 0.2 | setosa |
5.4 | 3.9 | 1.7 | 0.4 | setosa |
4.6 | 3.4 | 1.4 | 0.3 | setosa |
5.0 | 3.4 | 1.5 | 0.2 | setosa |
4.4 | 2.9 | 1.4 | 0.2 | setosa |
4.9 | 3.1 | 1.5 | 0.1 | setosa |
Modeling:
#> n= 112
#>
#> node), split, n, loss, yval, (yprob)
#> * denotes terminal node
#>
#> 1) root 112 72 setosa (0.35714286 0.30357143 0.33928571)
#> 2) Petal.Length< 2.5 40 0 setosa (1.00000000 0.00000000 0.00000000) *
#> 3) Petal.Length>=2.5 72 34 virginica (0.00000000 0.47222222 0.52777778)
#> 6) Petal.Width< 1.75 37 4 versicolor (0.00000000 0.89189189 0.10810811) *
#> 7) Petal.Width>=1.75 35 1 virginica (0.00000000 0.02857143 0.97142857) *
Prediction as probability:
#> setosa versicolor virginica
#> 1 1 0.00000000 0.0000000
#> 13 1 0.00000000 0.0000000
#> 16 1 0.00000000 0.0000000
#> 25 1 0.00000000 0.0000000
#> 28 1 0.00000000 0.0000000
#> 37 1 0.00000000 0.0000000
#> 40 1 0.00000000 0.0000000
#> 41 1 0.00000000 0.0000000
#> 45 1 0.00000000 0.0000000
#> 48 1 0.00000000 0.0000000
#> 51 0 0.89189189 0.1081081
#> 54 0 0.89189189 0.1081081
#> 62 0 0.89189189 0.1081081
#> 63 0 0.89189189 0.1081081
#> 64 0 0.89189189 0.1081081
#> 67 0 0.89189189 0.1081081
#> 68 0 0.89189189 0.1081081
#> 80 0 0.89189189 0.1081081
#> 82 0 0.89189189 0.1081081
#> 84 0 0.89189189 0.1081081
#> 85 0 0.89189189 0.1081081
#> 87 0 0.89189189 0.1081081
#> 89 0 0.89189189 0.1081081
#> 96 0 0.89189189 0.1081081
#> 98 0 0.89189189 0.1081081
#> 99 0 0.89189189 0.1081081
#> 102 0 0.02857143 0.9714286
#> 105 0 0.02857143 0.9714286
#> 115 0 0.02857143 0.9714286
#> 119 0 0.02857143 0.9714286
#> 122 0 0.02857143 0.9714286
#> 123 0 0.02857143 0.9714286
#> 130 0 0.89189189 0.1081081
#> 132 0 0.02857143 0.9714286
#> 133 0 0.02857143 0.9714286
#> 143 0 0.02857143 0.9714286
#> 144 0 0.02857143 0.9714286
#> 147 0 0.02857143 0.9714286
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor versicolor versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica versicolor virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 16 0
#> virginica 0 1 11
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 16 0
#> virginica 0 1 11
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 1.000000 0.916667
The model still supports the functions of the original package.
library(rpart.plot)
prp(model, extra = 104, branch.type = 2,
box.col = c("pink", "palegreen3", "cyan")[model$frame$yval])
Modeling:
#>
#> Naive Bayes Classifier for Discrete Predictors
#>
#> Call:
#> naiveBayes.default(x = X, y = Y, laplace = laplace)
#>
#> A-priori probabilities:
#> Y
#> setosa versicolor virginica
#> 0.3571429 0.3035714 0.3392857
#>
#> Conditional probabilities:
#> Sepal.Length
#> Y [,1] [,2]
#> setosa 4.985000 0.3591657
#> versicolor 5.970588 0.5357122
#> virginica 6.576316 0.5748956
#>
#> Sepal.Width
#> Y [,1] [,2]
#> setosa 3.405000 0.3815958
#> versicolor 2.764706 0.3227555
#> virginica 3.000000 0.3162278
#>
#> Petal.Length
#> Y [,1] [,2]
#> setosa 1.450000 0.1617215
#> versicolor 4.285294 0.4513497
#> virginica 5.507895 0.5042423
#>
#> Petal.Width
#> Y [,1] [,2]
#> setosa 0.247500 0.1085747
#> versicolor 1.344118 0.1909961
#> virginica 2.015789 0.2899453
Prediction as probability:
#> setosa versicolor virginica
#> [1,] 1.000000e+00 7.400932e-20 1.348206e-26
#> [2,] 1.000000e+00 4.184387e-20 4.935605e-27
#> [3,] 1.000000e+00 5.230150e-18 3.146672e-24
#> [4,] 1.000000e+00 1.524602e-15 4.584825e-22
#> [5,] 1.000000e+00 4.502547e-19 1.163711e-25
#> [6,] 1.000000e+00 1.736558e-19 4.793530e-26
#> [7,] 1.000000e+00 5.572007e-19 1.011311e-25
#> [8,] 1.000000e+00 3.632105e-19 1.925656e-26
#> [9,] 1.000000e+00 2.107296e-13 4.139813e-20
#> [10,] 1.000000e+00 1.071259e-19 5.345710e-27
#> [11,] 1.233478e-117 7.785007e-01 2.214993e-01
#> [12,] 8.276105e-76 9.999735e-01 2.646935e-05
#> [13,] 6.198830e-93 9.958479e-01 4.152140e-03
#> [14,] 1.002777e-66 9.999891e-01 1.094249e-05
#> [15,] 2.942568e-114 9.784854e-01 2.151463e-02
#> [16,] 1.807114e-106 9.894179e-01 1.058214e-02
#> [17,] 1.094481e-69 9.999583e-01 4.167560e-05
#> [18,] 1.538602e-45 9.999980e-01 2.046171e-06
#> [19,] 9.157277e-53 9.999979e-01 2.053595e-06
#> [20,] 8.534847e-146 5.564907e-01 4.435093e-01
#> [21,] 5.590446e-106 9.923191e-01 7.680851e-03
#> [22,] 1.065671e-120 7.657408e-01 2.342592e-01
#> [23,] 3.449775e-79 9.997358e-01 2.642305e-04
#> [24,] 3.617648e-80 9.997401e-01 2.598548e-04
#> [25,] 1.748106e-90 9.984078e-01 1.592201e-03
#> [26,] 1.317590e-31 9.999999e-01 1.317255e-07
#> [27,] 1.121179e-161 2.414187e-02 9.758581e-01
#> [28,] 6.179955e-231 1.712775e-07 9.999998e-01
#> [29,] 2.812357e-196 6.926661e-07 9.999993e-01
#> [30,] 0.000000e+00 1.576614e-12 1.000000e+00
#> [31,] 3.234047e-155 1.432243e-02 9.856776e-01
#> [32,] 6.697641e-296 1.959515e-09 1.000000e+00
#> [33,] 3.417133e-198 7.641346e-04 9.992359e-01
#> [34,] 5.500206e-271 1.110922e-09 1.000000e+00
#> [35,] 1.365737e-216 1.148364e-06 9.999989e-01
#> [36,] 1.121179e-161 2.414187e-02 9.758581e-01
#> [37,] 7.996794e-247 3.380471e-09 1.000000e+00
#> [38,] 6.813941e-158 2.673432e-02 9.732657e-01
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor versicolor versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 16 0
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 16 0
#> virginica 0 0 12
#>
#> Overall Accuracy: 1.0000
#> Overall Error: 0.0000
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 1.000000 1.000000
Modeling:
#> Call:
#> lda(Species ~ ., data = data.train)
#>
#> Prior probabilities of groups:
#> setosa versicolor virginica
#> 0.3571429 0.3035714 0.3392857
#>
#> Group means:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa 4.985000 3.405000 1.450000 0.247500
#> versicolor 5.970588 2.764706 4.285294 1.344118
#> virginica 6.576316 3.000000 5.507895 2.015789
#>
#> Coefficients of linear discriminants:
#> LD1 LD2
#> Sepal.Length 1.124712 0.5022016
#> Sepal.Width 1.421003 -2.4568406
#> Petal.Length -2.672942 0.5448688
#> Petal.Width -2.604451 -2.4383341
#>
#> Proportion of trace:
#> LD1 LD2
#> 0.993 0.007
Prediction as probability:
#> setosa versicolor virginica
#> 1 1.000000e+00 4.279885e-26 5.307384e-48
#> 13 1.000000e+00 4.688591e-22 2.619221e-43
#> 16 1.000000e+00 3.122947e-32 6.757260e-55
#> 25 1.000000e+00 7.147402e-18 8.032096e-37
#> 28 1.000000e+00 2.303507e-25 4.658727e-47
#> 37 1.000000e+00 3.183836e-29 1.865653e-52
#> 40 1.000000e+00 3.747875e-24 1.645712e-45
#> 41 1.000000e+00 9.095636e-26 2.656868e-47
#> 45 1.000000e+00 4.025196e-20 5.016116e-39
#> 48 1.000000e+00 1.677369e-21 5.934792e-42
#> 51 4.344294e-21 9.999623e-01 3.773942e-05
#> 54 2.453863e-25 9.997945e-01 2.054896e-04
#> 62 7.822648e-23 9.995399e-01 4.601252e-04
#> 63 1.700777e-20 9.999996e-01 3.632865e-07
#> 64 1.327702e-27 9.917009e-01 8.299119e-03
#> 67 6.386433e-28 9.585298e-01 4.147022e-02
#> 68 5.255689e-19 9.999993e-01 7.417301e-07
#> 80 5.915717e-13 1.000000e+00 3.949975e-09
#> 82 8.477967e-18 9.999999e-01 1.380672e-07
#> 84 8.319874e-38 4.957339e-02 9.504266e-01
#> 85 6.534139e-29 8.923705e-01 1.076295e-01
#> 87 2.563251e-24 9.991232e-01 8.767892e-04
#> 89 6.056125e-21 9.999467e-01 5.331421e-05
#> 96 1.287091e-20 9.999774e-01 2.263433e-05
#> 98 3.209382e-21 9.999763e-01 2.372830e-05
#> 99 1.435623e-11 1.000000e+00 2.855331e-09
#> 102 4.065940e-44 3.298961e-04 9.996701e-01
#> 105 4.119364e-53 4.170138e-07 9.999996e-01
#> 115 1.741312e-51 5.128539e-07 9.999995e-01
#> 119 8.184961e-68 2.919340e-10 1.000000e+00
#> 122 5.000649e-43 2.970267e-04 9.997030e-01
#> 123 6.677163e-58 2.075292e-07 9.999998e-01
#> 130 2.325154e-38 4.624754e-02 9.537525e-01
#> 132 4.215852e-43 1.614612e-04 9.998385e-01
#> 133 3.249585e-52 1.095243e-06 9.999989e-01
#> 143 4.065940e-44 3.298961e-04 9.996701e-01
#> 144 1.332725e-52 3.137510e-07 9.999997e-01
#> 147 1.176505e-40 6.848661e-03 9.931513e-01
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000
Modeling:
#> Call:
#> qda(Species ~ ., data = data.train)
#>
#> Prior probabilities of groups:
#> setosa versicolor virginica
#> 0.3571429 0.3035714 0.3392857
#>
#> Group means:
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa 4.985000 3.405000 1.450000 0.247500
#> versicolor 5.970588 2.764706 4.285294 1.344118
#> virginica 6.576316 3.000000 5.507895 2.015789
Prediction as probability:
#> setosa versicolor virginica
#> 1 1.000000e+00 6.691672e-32 1.889822e-56
#> 13 1.000000e+00 4.502161e-25 1.643751e-45
#> 16 1.000000e+00 2.425866e-44 9.946646e-77
#> 25 1.000000e+00 1.846038e-22 7.222161e-41
#> 28 1.000000e+00 2.263734e-31 1.405378e-55
#> 37 1.000000e+00 1.066101e-34 1.642074e-61
#> 40 1.000000e+00 2.223760e-29 1.409863e-52
#> 41 1.000000e+00 2.574092e-30 7.078165e-55
#> 45 1.000000e+00 5.261433e-25 1.362316e-47
#> 48 1.000000e+00 5.965990e-25 9.832492e-46
#> 51 3.913327e-93 9.999983e-01 1.748560e-06
#> 54 1.132001e-65 9.957950e-01 4.205039e-03
#> 62 6.799811e-76 9.996645e-01 3.354597e-04
#> 63 1.586686e-60 9.999626e-01 3.741195e-05
#> 64 2.841930e-97 9.922291e-01 7.770865e-03
#> 67 3.382059e-92 9.774238e-01 2.257615e-02
#> 68 3.965797e-62 9.999593e-01 4.067484e-05
#> 80 2.706100e-39 1.000000e+00 2.529603e-08
#> 82 2.922149e-48 9.999955e-01 4.460501e-06
#> 84 1.063813e-125 3.546163e-02 9.645384e-01
#> 85 1.169232e-93 9.200247e-01 7.997532e-02
#> 87 1.016187e-96 9.999161e-01 8.390841e-05
#> 89 2.201163e-68 9.999721e-01 2.794462e-05
#> 96 6.738690e-70 9.999703e-01 2.968347e-05
#> 98 4.789342e-75 9.999871e-01 1.287034e-05
#> 99 4.964949e-27 9.999997e-01 3.192563e-07
#> 102 7.054324e-137 4.787216e-05 9.999521e-01
#> 105 6.250126e-188 1.197738e-07 9.999999e-01
#> 115 6.000194e-160 6.444145e-15 1.000000e+00
#> 119 1.837646e-268 2.990105e-10 1.000000e+00
#> 122 2.283010e-131 1.810862e-06 9.999982e-01
#> 123 2.854321e-243 1.329319e-07 9.999999e-01
#> 130 9.978738e-165 1.315865e-02 9.868413e-01
#> 132 2.577367e-212 3.871752e-02 9.612825e-01
#> 133 3.618142e-175 1.809676e-08 1.000000e+00
#> 143 7.054324e-137 4.787216e-05 9.999521e-01
#> 144 7.744264e-197 5.679973e-08 9.999999e-01
#> 147 1.109338e-127 7.516888e-05 9.999248e-01
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000
Modeling:
#>
#> Call:
#> randomForest(formula = Species ~ ., data = data.train, importance = TRUE)
#> Type of random forest: classification
#> Number of trees: 500
#> No. of variables tried at each split: 2
#>
#> OOB estimate of error rate: 5.36%
#> Confusion matrix:
#> setosa versicolor virginica class.error
#> setosa 40 0 0 0.00000000
#> versicolor 0 31 3 0.08823529
#> virginica 0 3 35 0.07894737
Prediction as probability:
#> setosa versicolor virginica
#> 1 1.000 0.000 0.000
#> 13 1.000 0.000 0.000
#> 16 0.990 0.010 0.000
#> 25 1.000 0.000 0.000
#> 28 1.000 0.000 0.000
#> 37 0.960 0.040 0.000
#> 40 1.000 0.000 0.000
#> 41 1.000 0.000 0.000
#> 45 1.000 0.000 0.000
#> 48 1.000 0.000 0.000
#> 51 0.000 0.982 0.018
#> 54 0.000 0.986 0.014
#> 62 0.002 0.990 0.008
#> 63 0.000 0.942 0.058
#> 64 0.000 0.976 0.024
#> 67 0.010 0.972 0.018
#> 68 0.000 1.000 0.000
#> 80 0.000 0.998 0.002
#> 82 0.000 1.000 0.000
#> 84 0.000 0.190 0.810
#> 85 0.042 0.896 0.062
#> 87 0.000 0.988 0.012
#> 89 0.010 0.988 0.002
#> 96 0.008 0.990 0.002
#> 98 0.000 0.994 0.006
#> 99 0.002 0.966 0.032
#> 102 0.000 0.066 0.934
#> 105 0.000 0.000 1.000
#> 115 0.000 0.054 0.946
#> 119 0.000 0.006 0.994
#> 122 0.002 0.192 0.806
#> 123 0.000 0.000 1.000
#> 130 0.000 0.322 0.678
#> 132 0.000 0.000 1.000
#> 133 0.000 0.000 1.000
#> 143 0.000 0.066 0.934
#> 144 0.000 0.000 1.000
#> 147 0.000 0.054 0.946
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000
The model still supports the functions of the original package.
Modeling:
#>
#> Call:
#> kknn::train.kknn(formula = Species ~ ., data = data.train)
#>
#> Type of response variable: nominal
#> Minimal misclassification: 0.05357143
#> Best kernel: optimal
#> Best k: 6
Prediction as probability:
#> setosa versicolor virginica
#> [1,] 1 0.00000000 0.00000000
#> [2,] 1 0.00000000 0.00000000
#> [3,] 1 0.00000000 0.00000000
#> [4,] 1 0.00000000 0.00000000
#> [5,] 1 0.00000000 0.00000000
#> [6,] 1 0.00000000 0.00000000
#> [7,] 1 0.00000000 0.00000000
#> [8,] 1 0.00000000 0.00000000
#> [9,] 1 0.00000000 0.00000000
#> [10,] 1 0.00000000 0.00000000
#> [11,] 0 1.00000000 0.00000000
#> [12,] 0 1.00000000 0.00000000
#> [13,] 0 0.88155533 0.11844467
#> [14,] 0 0.88155533 0.11844467
#> [15,] 0 0.88155533 0.11844467
#> [16,] 0 1.00000000 0.00000000
#> [17,] 0 1.00000000 0.00000000
#> [18,] 0 1.00000000 0.00000000
#> [19,] 0 1.00000000 0.00000000
#> [20,] 0 0.08866211 0.91133789
#> [21,] 0 0.97854845 0.02145155
#> [22,] 0 1.00000000 0.00000000
#> [23,] 0 1.00000000 0.00000000
#> [24,] 0 1.00000000 0.00000000
#> [25,] 0 1.00000000 0.00000000
#> [26,] 0 1.00000000 0.00000000
#> [27,] 0 0.00000000 1.00000000
#> [28,] 0 0.00000000 1.00000000
#> [29,] 0 0.00000000 1.00000000
#> [30,] 0 0.00000000 1.00000000
#> [31,] 0 0.02145155 0.97854845
#> [32,] 0 0.00000000 1.00000000
#> [33,] 0 0.08866211 0.91133789
#> [34,] 0 0.00000000 1.00000000
#> [35,] 0 0.00000000 1.00000000
#> [36,] 0 0.00000000 1.00000000
#> [37,] 0 0.00000000 1.00000000
#> [38,] 0 0.17779340 0.82220660
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000
Modeling:
#> # weights: 163
#> initial value 129.434889
#> iter 10 value 11.287791
#> iter 20 value 0.777812
#> iter 30 value 0.003981
#> final value 0.000060
#> converged
#> a 4-20-3 network with 163 weights
#> inputs: Sepal.Length Sepal.Width Petal.Length Petal.Width
#> output(s): Species
#> options were - softmax modelling
Prediction as probability:
#> setosa versicolor virginica
#> 1 9.999986e-01 1.383479e-06 3.359731e-19
#> 13 9.999986e-01 1.383636e-06 3.360458e-19
#> 16 9.999986e-01 1.383395e-06 3.359270e-19
#> 25 9.999977e-01 2.308408e-06 5.338393e-19
#> 28 9.999986e-01 1.383463e-06 3.359620e-19
#> 37 9.999986e-01 1.383435e-06 3.359494e-19
#> 40 9.999986e-01 1.383488e-06 3.359739e-19
#> 41 9.999986e-01 1.383499e-06 3.359850e-19
#> 45 9.999986e-01 1.400473e-06 3.396849e-19
#> 48 9.999986e-01 1.383654e-06 3.360625e-19
#> 51 1.115595e-17 1.000000e+00 3.859792e-16
#> 54 6.704809e-19 1.000000e+00 3.966570e-17
#> 62 7.120670e-18 1.000000e+00 2.691104e-16
#> 63 1.926870e-18 1.000000e+00 9.406836e-17
#> 64 8.197192e-19 1.000000e+00 4.702770e-17
#> 67 9.644722e-19 1.000000e+00 5.356778e-17
#> 68 7.710825e-18 1.000000e+00 2.870531e-16
#> 80 4.798027e-17 1.000000e+00 1.245300e-15
#> 82 9.190669e-18 1.000000e+00 3.305507e-16
#> 84 6.998721e-29 9.783636e-28 1.000000e+00
#> 85 7.113058e-19 1.000000e+00 4.661924e-17
#> 87 3.406634e-18 1.000000e+00 1.488599e-16
#> 89 1.106838e-17 1.000000e+00 3.837079e-16
#> 96 9.812261e-18 1.000000e+00 3.483441e-16
#> 98 7.046697e-18 1.000000e+00 2.669149e-16
#> 99 6.250023e-17 1.000000e+00 1.540263e-15
#> 102 5.051812e-29 6.016841e-27 1.000000e+00
#> 105 4.590677e-29 1.074873e-26 1.000000e+00
#> 115 4.563998e-29 1.059431e-26 1.000000e+00
#> 119 4.294868e-29 1.509395e-26 1.000000e+00
#> 122 5.654063e-29 3.201470e-27 1.000000e+00
#> 123 4.399819e-29 1.411425e-26 1.000000e+00
#> 130 1.137869e-28 1.792370e-28 1.000000e+00
#> 132 1.302765e-28 3.242616e-29 1.000000e+00
#> 133 4.528324e-29 1.149565e-26 1.000000e+00
#> 143 5.051812e-29 6.016841e-27 1.000000e+00
#> 144 5.035766e-29 6.572968e-27 1.000000e+00
#> 147 6.053025e-29 2.281264e-27 1.000000e+00
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000
Modeling:
model <- train.neuralnet(Species~., data.train, hidden = c(5, 7, 6),
linear.output = FALSE, threshold = 0.01, stepmax = 1e+06)
summary(model)
#> Length Class Mode
#> call 7 -none- call
#> response 336 -none- logical
#> covariate 448 -none- numeric
#> model.list 2 -none- list
#> err.fct 1 -none- function
#> act.fct 1 -none- function
#> linear.output 1 -none- logical
#> data 5 data.frame list
#> exclude 0 -none- NULL
#> net.result 1 -none- list
#> weights 1 -none- list
#> generalized.weights 1 -none- list
#> startweights 1 -none- list
#> result.matrix 139 -none- numeric
#> prmdt 4 -none- list
Prediction as probability:
#> setosa versicolor virginica
#> 1 1.000000e+00 3.446809e-09 9.207977e-31
#> 13 1.000000e+00 3.431848e-09 9.253007e-31
#> 16 1.000000e+00 3.464710e-09 9.154415e-31
#> 25 1.000000e+00 3.460573e-09 9.166492e-31
#> 28 1.000000e+00 3.439434e-09 9.230287e-31
#> 37 1.000000e+00 3.405075e-09 9.335313e-31
#> 40 1.000000e+00 3.439770e-09 9.229221e-31
#> 41 1.000000e+00 3.454044e-09 9.186200e-31
#> 45 1.000000e+00 3.464711e-09 9.154281e-31
#> 48 1.000000e+00 3.462756e-09 9.159953e-31
#> 51 9.056655e-21 1.000000e+00 5.242281e-13
#> 54 9.199862e-22 1.000000e+00 9.674819e-12
#> 62 1.843951e-21 1.000000e+00 2.715652e-12
#> 63 1.113558e-20 1.000000e+00 4.667777e-13
#> 64 1.017739e-23 1.000000e+00 1.054842e-09
#> 67 3.080147e-24 1.000000e+00 2.280508e-09
#> 68 1.194968e-20 1.000000e+00 3.954779e-13
#> 80 1.529933e-06 9.998006e-01 3.733476e-20
#> 82 1.367241e-20 1.000000e+00 3.509938e-13
#> 84 7.325186e-40 1.490605e-09 1.000000e+00
#> 85 1.919662e-24 1.000000e+00 3.244973e-09
#> 87 1.805485e-21 1.000000e+00 3.094284e-12
#> 89 5.810945e-21 1.000000e+00 7.608977e-13
#> 96 7.313367e-21 1.000000e+00 6.093775e-13
#> 98 6.938315e-21 1.000000e+00 7.077371e-13
#> 99 1.000000e+00 5.010612e-09 1.773402e-30
#> 102 4.169881e-43 4.300800e-13 1.000000e+00
#> 105 2.947217e-46 1.755565e-16 1.000000e+00
#> 115 1.171536e-42 7.565021e-13 1.000000e+00
#> 119 9.256015e-48 3.400952e-18 1.000000e+00
#> 122 1.832470e-40 3.287895e-10 1.000000e+00
#> 123 2.886545e-47 1.290550e-17 1.000000e+00
#> 130 1.450795e-37 4.000902e-07 9.999999e-01
#> 132 1.222779e-43 3.686602e-13 1.000000e+00
#> 133 5.054144e-46 2.750890e-16 1.000000e+00
#> 143 4.169881e-43 4.300800e-13 1.000000e+00
#> 144 2.261717e-46 1.431147e-16 1.000000e+00
#> 147 3.185724e-41 2.768763e-11 1.000000e+00
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor setosa virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 1 14 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 1 14 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9474
#> Overall Error: 0.0526
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.875000 1.000000
Modeling:
#>
#> Call:
#> svm(formula = Species ~ ., data = data.train, probability = TRUE)
#>
#>
#> Parameters:
#> SVM-Type: C-classification
#> SVM-Kernel: radial
#> cost: 1
#>
#> Number of Support Vectors: 47
Prediction as probability:
#> setosa versicolor virginica
#> 1 0.975860958 0.013757554 0.010381488
#> 13 0.968222765 0.019787248 0.011989988
#> 16 0.911034087 0.050381129 0.038584784
#> 25 0.969260887 0.018012711 0.012726402
#> 28 0.974556454 0.014977704 0.010465842
#> 37 0.968156507 0.019159888 0.012683605
#> 40 0.974464336 0.014874193 0.010661471
#> 41 0.975620430 0.013898904 0.010480665
#> 45 0.966907885 0.020991755 0.012100360
#> 48 0.970297256 0.016719339 0.012983404
#> 51 0.028534671 0.893620306 0.077845024
#> 54 0.009522061 0.943497629 0.046980311
#> 62 0.013106574 0.956087867 0.030805559
#> 63 0.020885185 0.966277260 0.012837554
#> 64 0.010694026 0.910217138 0.079088836
#> 67 0.014294620 0.903745978 0.081959402
#> 68 0.017701721 0.976563723 0.005734556
#> 80 0.024639959 0.968946465 0.006413576
#> 82 0.015993412 0.974233164 0.009773425
#> 84 0.009911426 0.239064489 0.751024085
#> 85 0.017928538 0.886676770 0.095394691
#> 87 0.017687662 0.871847924 0.110464414
#> 89 0.022392815 0.966109725 0.011497459
#> 96 0.022729064 0.968838507 0.008432430
#> 98 0.013399668 0.974466955 0.012133376
#> 99 0.048197572 0.931664546 0.020137883
#> 102 0.007959374 0.030697654 0.961342971
#> 105 0.009215605 0.002209793 0.988574602
#> 115 0.011886190 0.003735433 0.984378377
#> 119 0.056306085 0.034365448 0.909328467
#> 122 0.009643351 0.038670840 0.951685809
#> 123 0.031097542 0.026021173 0.942881286
#> 130 0.017786519 0.105533566 0.876679915
#> 132 0.032755368 0.044535218 0.922709414
#> 133 0.009636615 0.002294039 0.988069346
#> 143 0.007959374 0.030697654 0.961342971
#> 144 0.009302167 0.003272889 0.987424945
#> 147 0.010741481 0.060024226 0.929234293
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000
Modeling:
#> ##### xgb.Booster
#> raw: 139 Kb
#> call:
#> xgb.train(params = params, data = train_aux, nrounds = nrounds,
#> watchlist = watchlist, obj = obj, feval = feval, verbose = verbose,
#> print_every_n = print_every_n, early_stopping_rounds = early_stopping_rounds,
#> maximize = maximize, save_period = save_period, save_name = save_name,
#> xgb_model = xgb_model, callbacks = callbacks, eval_metric = "mlogloss")
#> params (as set within xgb.train):
#> booster = "gbtree", objective = "multi:softprob", eta = "0.3", gamma = "0", max_depth = "6", min_child_weight = "1", subsample = "1", colsample_bytree = "1", num_class = "3", eval_metric = "mlogloss", validate_parameters = "TRUE"
#> xgb.attributes:
#> niter
#> callbacks:
#> cb.evaluation.log()
#> # of features: 4
#> niter: 79
#> nfeatures : 4
#> evaluation_log:
#> iter train_mlogloss
#> 1 0.743578
#> 2 0.532534
#> ---
#> 78 0.015663
#> 79 0.015611
Prediction as probability:
#> setosa versicolor virginica
#> [1,] 0.9944374561 0.004435789 0.0011267414
#> [2,] 0.9939395189 0.004433568 0.0016269000
#> [3,] 0.9821980596 0.016689112 0.0011128737
#> [4,] 0.9944374561 0.004435789 0.0011267414
#> [5,] 0.9944374561 0.004435789 0.0011267414
#> [6,] 0.9837585092 0.015126886 0.0011146417
#> [7,] 0.9944374561 0.004435789 0.0011267414
#> [8,] 0.9944374561 0.004435789 0.0011267414
#> [9,] 0.9944374561 0.004435789 0.0011267414
#> [10,] 0.9944374561 0.004435789 0.0011267414
#> [11,] 0.0009844096 0.997911751 0.0011038530
#> [12,] 0.0046227896 0.989484012 0.0058931801
#> [13,] 0.0017534802 0.997382224 0.0008642558
#> [14,] 0.0026980436 0.984013975 0.0132879959
#> [15,] 0.0013079111 0.996260285 0.0024318874
#> [16,] 0.0073815910 0.988237202 0.0043811873
#> [17,] 0.0028598958 0.994277835 0.0028622176
#> [18,] 0.0028598958 0.994277835 0.0028622176
#> [19,] 0.0046227896 0.989484012 0.0058931801
#> [20,] 0.0031536364 0.014520043 0.9823263288
#> [21,] 0.0272189658 0.956625819 0.0161552429
#> [22,] 0.0010063513 0.997825563 0.0011681097
#> [23,] 0.0054605692 0.992357016 0.0021824159
#> [24,] 0.0054605692 0.992357016 0.0021824159
#> [25,] 0.0011453496 0.997244596 0.0016100713
#> [26,] 0.0163861588 0.965533018 0.0180808567
#> [27,] 0.0038726968 0.004364253 0.9917631149
#> [28,] 0.0012481194 0.003202455 0.9955494404
#> [29,] 0.0038726968 0.004364253 0.9917631149
#> [30,] 0.0004997505 0.001309848 0.9981903434
#> [31,] 0.0065130251 0.026439615 0.9670473933
#> [32,] 0.0004997505 0.001309848 0.9981903434
#> [33,] 0.0077368501 0.124345370 0.8679177165
#> [34,] 0.0013536282 0.003473172 0.9951731563
#> [35,] 0.0004507682 0.001181465 0.9983677268
#> [36,] 0.0038726968 0.004364253 0.9917631149
#> [37,] 0.0013536282 0.003473172 0.9951731563
#> [38,] 0.0012919764 0.005974662 0.9927333593
Prediction as classification:
#> [1] setosa setosa setosa setosa setosa setosa
#> [7] setosa setosa setosa setosa versicolor versicolor
#> [13] versicolor versicolor versicolor versicolor versicolor versicolor
#> [19] versicolor virginica versicolor versicolor versicolor versicolor
#> [25] versicolor versicolor virginica virginica virginica virginica
#> [31] virginica virginica virginica virginica virginica virginica
#> [37] virginica virginica
#> Levels: setosa versicolor virginica
Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
Some Rates:
#>
#> Confusion Matrix:
#> prediction
#> real setosa versicolor virginica
#> setosa 10 0 0
#> versicolor 0 15 1
#> virginica 0 0 12
#>
#> Overall Accuracy: 0.9737
#> Overall Error: 0.0263
#>
#> Category Accuracy:
#>
#> setosa versicolor virginica
#> 1.000000 0.937500 1.000000