Example

data

data(dataVerlaat,package="GRridge")

y <- as.numeric(as.factor(respVerlaat))-1
X <- t(datcenVerlaat)
prior <- sign(diffmeanFarkas)*(-log10(pvalFarkas))

model fitting

cross-validation

set.seed(1)
foldid.ext <- sample(rep(1:10,length.out=length(y)))
foldid.int <- sample(rep(1:10,length.out=length(y)))

y_hat <- data.frame(truth=y)

for(i in 1:10){
  
  holdout <- foldid.ext==i
  foldid <- foldid.int[!holdout]
  
  # training data
  y0 <- y[!holdout]
  X0 <- X[!holdout,]
  # testing data
  X1 <- X[holdout,]
  
  glmnet <- glmnet::cv.glmnet(y=y0,x=X0,family="binomial",foldid=foldid,alpha=1)
  y_hat$glmnet[holdout] <- predict(glmnet,newx=X1,type="response",s="lambda.min")
  
  rf <- randomForest::randomForest(x=X0,y=as.factor(y0),norm.votes=TRUE)
  y_hat$rf[holdout] <- predict(rf,newdata=X1,type="prob")[,2]

  svm <- e1071::svm(x=X0,y=as.factor(y0),kernel="linear",probability=TRUE)
  y_hat$svm[holdout] <- attributes(predict(svm,newdata=X1,probability=TRUE))$probabilities[,2]
  
  transreg <- transreg::transreg(y=y0,X=X0,prior=prior,family="binomial",foldid=foldid,alpha=1)
  y_hat$transreg[holdout] <- predict(transreg,newx=X1)
}

apply(y_hat,2,function(x) pROC::auc(pROC::roc(response=y,predictor=x,direction="<")))

apply(y_hat,2,function(x) starnet:::.loss(y=y,x=x,family="binomial",type.measure="auc",foldid=foldid.ext))