CONTRIBUTED RESEARCH ARTICLE

walkr: MCMC Sampling from
Non-Negative Convex Polytopes

by Andy Yao, David Kane

Abstract Consider the intersection of two spaces: the complete solution space to Ax = b and the
N

N-simplex, described by) x; = 1 and x; > 0. The intersection of these two spaces is a non-negative
=1

=
convex polytope. The R package walkr samples from this intersection using two Monte-Carlo Markov
Chain (MCMC) methods: hit-and-run and Dikin walk. walkr also provides tools to examine sample
quality.

Introduction

Consider all possible vectors x that satisfy the matrix equation Ax = b, where Ais M x N, xis N x 1,
and b is M x 1. The problem is interesting when there are more rows than columns (M < N). In
general, if M = N, then there is a single solution, and if M > N, then there are no solutions. If
the rows of A are linearly dependent, rows can be eliminated until they are linearly independent
without changing the solution space. Assume that the rows of A are linearly independent going
forward.

Geometrically, every row in Ax = b describes a hyperplane in RN. Ax = b represents the intersection
of M unbounded hyperplanes. We bound the sample space by also requiring the vector x to be in the
N-simplex, defined as:

x1+x2+x3+..+xy=1
x; >0, vV iell,2,..,N}

The N-simplex is a N — 1 dimensional object living in N dimensional space. For example, the 3D-
simplex is a two dimensional equilateral triangle in three dimensional space (Figure 1).

Figure 1: The 3D simplex is a two dimensional triangle in three dimensional space. The vertices of the
simplex are (1,0,0), (0,1,0), and (0,0,1). x1, x5, and x3 are all greater than or equal to 0, and for all
points on the simplex, the sum of x1, x; and x3 equals 1.

The intersection of the complete solution to Ax = b and the N-simplex is a non-negative convex
polytope. Sampling from such an object is a difficult problem, and the common approach is to run
Monte-Carlo Markov Chains (MCMC) (Kannan and Lovasz (1997)). MCMC methods begin at a
starting point in the solution space and then randomly “wander” through the space according to an
algorithm. An important feature of MCMC is that every step depends only on the current location and
not on the steps taken previously.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

MCMC sampling generally involve the creation of multiple random walks from different starting
points, each of which is an independent “chain”. A key aspect of running multiple chains from
different starting points is to examine the “mixing” of the sample. Good mixing means that the
different chains (from different starting points) have overlapped with each other, suggesting that they
have thoroughly moved around the sample space. While good mixing does not guarantee a correct
sample of the polytope, poor mixing means poor sampling. walkr examines the quality of MCMC
samples.

walkr includes two MCMC algorithms: hit-and-run and Dikin walk. Hit-and-run guarantees uniform
sampling asympotically, but mixes more slowly as the number of columns in A increase (Vempala
(2005)). Dikin walk generates a non-uniform sample — favoring points away from the edges of the
polytope — but exhibits much faster mixing (Kannan and Narayanan (2009)).

Three dimensional example
Consider one linear constraint in three dimensions.

x1+x3 =05

We can express this in terms of the matrix equation Ax = b:

X1
A=[1 0 1], b=05 x=|x
X3

Figure 2 shows the intersection of the 3D-simplex with Ax = b.

Figure 2: The orange triangle is the 3D-simplex. The blue plane is the hyperplane x; + x3 = 0.5. The
red line segment is their intersection, which is our sample space. The end points of the line segment
are (0.5,0.5,0) and (0,0.5,0.5).

Four dimensional example

Just as the 3D-simplex is a 2D surface, the 4D-simplex (i.e. x1 +xp +x3 + x4 = 1, x; > 0) can be
viewed as a 3D object, as in Figure 3. Specifically, the 4D-simplex is a tetradhedron when viewed from
3D space, with verticies (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1).

The R Journal Vol. XX/YY, AAAA 2077 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

(1,0,0,0)

(1,0,0,0) (0,1,0,0)

0,0,1,0)

Figure 3: The 4D-simplex exists in 4D space, but can be viewed as a 3D object. When viewed from
three dimensional space, the 4D-simplex is a tetrahedron, with all four sides equilateral triangles.

Figure 4 shows the intersection of the 4D-simplex with a hyperplane (1 equation, or 1 row in Ax = b).
The resulting convex polytope is a 2D trapezoid in 4D space. Note that this convex polytope is
4 — (1+1) = 2 dimensional. This is because we began with 4 dimensions, and the constraint and the
simplex each reduced the dimension of the solution space by 1.

A=[2 2 2 37], b=l

(0.7,03,0,0) 0.7,0,03,0)

0,0,1,0)

(0,06,0,04) 0,0,0.6,04)

©,0,0,1)

Figure 4: The 4D-simplex is a tetrahedron when projected to 3D space. The hyperplane 22x; + 2x, +
2x3 4+ 37x4 = 16 cuts through the tetrahedron, forming a trapezoid as the intersection (in red). This
trapezoid is our sample space, as it is the intersection of the hyperplane with the 4D-simplex. The
vertices of the trapezoid are (0.7,0.3,0,0), (0.7,0,0.3,0), (0,0.6,0,0.4), and (0,0, 0.6,0.4).

In higher dimensions, the same logic applies. Each row in Ax = b is a hyperplane living in RY.
Geometrically, our sample space is the intersection of M hyperplanes with the N-simplex, which will
be N — (M + 1) dimensional.

x-space and a-space

Our sample space is a bounded, non-negative convex polytope. In the literature, convex polytopes
are commonly described by a generic Ax < b. In order to use the sampling algorithms, we must first

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

re-express the sample space in the form Ax < b (with different A, x and b) '.

Recall that our sample space is the intersection of the complete solution to Ax = b and the N-simplex,
which consists of three components: first, the matrix equation Ax = b, second, the simplex constraint
X1 + X2 4+ ... + xy = 1 and, third, the non-negative inequalities, x; > 0. In this section, we combine all
three parts into one single inequality of the form Ax < b.

Step 1: Combine the simplex equality with the original Ax = b

Recall that Ain Ax =bis M x N:

N columns

A= }M TOWS

Add an extra row in Ax = b which captures the equality part of the simplex constraint (x1 + x2 + ... +
xn = 1). Call this new matrix A’:

Step 2: Solve for the null space and transform to a-space

Find x that satisfies A’x = b’. First, solve for the null space of A’, defined as all x that satisfy A’x = 0.
The null space is spanned by N — (M + 1) basis vectors, because that is the dimension of the sample
space (our polytope). Any vector formed by a linear combination of the basis vectors will still be in
the null space.

Second, find a particular solution. Think of the null space as constructing a coordinate system for
A’x = 0 and of the particular solution as an offset from the origin to fit A’x = b’. See Leon (2014) for
a review of the specifics of finding null spaces and particular solutions.

The null space of A’ can be represented by N — (M + 1) basis vectors. Because we are in RV, every
basis vector, v;, has N components:

basisvectors={v1, U2, U3, e ’ Z’1\1—(M+1)}

Once we have the null space basis vectors and a particular solution, vp,ticy1ar, We can express the set
of all x’s that satisfy A’x = b’ in terms of coefficients a;. The complete solution to A’x = b’ can be
expressed as the set:

{X = Uparticular T X101 + X202 + 4303 + ... + AN (M+1)IN—(M+1) | w€ R}

This space is now described in terms of «;’s, the coefficients of the basis vectors. We call this “a-
space”.

Step 3: Include the simplex inequalities

We add the inequality constraints from the N-simplex, requiring every element of vector x to be greater
than or equal to 0:

1This is a total abuse of notation. The A in Ax = b is very different from the A in Ax < b. This new A is N by
N — (M +1). x and b are also different. The mathematical literature for linear equations uses Ax = b, and the
litearture on convex polytopes uses Ax < b, so it seemed best to use the same notation in both places in order to
make connections to the existing literature clearer.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

X = Uparticular T X101 + €202 + 8303 + .. + AN (M+1)IN—(M+1) >

We express all coefficients «; as a vector a:

a1
1L%)

XN—(M+1)

We can also express the set of basis vectors as columns of matrix V:

V = [Z)l (%) va(M+1)]

Therefore, the inequality now becomes:

Uparticular +Va >

Vo > —Vparticular

—Va < Uparticutar

Finally, our convex polytope is in the desired form Ax < b, whichis —Va < vpaticutar-

Four dimensional transformation example
Consider the four dimensional example from Figure 4.

A=1[22 2 2 37], b=]16]

Step 1: Add an extra row in Ax = b to capture the simplex equality.

, 22 2 2 371, [16
A*{l 11 1}' b*{l}

Step 2: The null space basis contain 2 vectors,as M — (N +1) = 4 — (14 1) = 2 is the dimension of
our solution space. The null space basis vectors (to three decimal places) are:

—0.103 —0.833
oo | 0680 | 0265
1 0723 |7 2 0.092

0.059 0.476

A particular solution to A’x = b’ is (any particular solution works):

0.212

0.147
Uparticular = |) 359

0.274

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Step 3: We add on the simplex inequalities:

Uparticular T #1701 + 2202 2

o O O o

Finally, we re-express the inequalities as —Va < Upgpticyar, which is of the form Ax < b

—-0.103 —0.833
V= —0.680 0.265
0.723 0.092
0.059 0.476
= [a
5]
0.103 0.833 0.212
0.680 —0.265 {al} < 0.147
—0.723 —-0.092| |ay 0.359
—-0.059 —-0.476 0.274

—Va < Uparticular
We sample a’s according to our MCMC sampling algorithms. Then, we map the a’s back as x’s in the
original coordinate system by:

X = Uparticular + V&

For example, an « we sample can be:

 [-0.149
=1 0372

Apply the map to a, obtaining x in the original problem statement.

0.212 —0.103 —0.833 0.539
o va 0147 —0.680 0.265 | [—0.149] _ |0.152
particular 0.359 0723 0.092 | |-0372 0.219
0.274 0.059 0476 0.090

Indeed, the mapped point satisfies the original Ax = b and the N-simplex.

Recall that we began with the intersection of the complete solution to Ax = b and the N-simplex,
represented as three different parts. First, we add the x1 + x2 + ... + x5 = 1 part of the simplex
equation as an extra row to Ax = b. Second, we solve for a particular solution and the the null space of
A, obtaining the matrix V which contains the null space basis vectors. Finally, we add the inequality
constraints x; > 0 to obtain —Va < Uparticular-

Going forward, we will not use the —Va < v44;c14, nOtation and will instead use Ax < b to denote
the same matrix inequality. This is a total abuse of notation, as the A, x and b in Ax < b are actually
—V, a and vpgyticuar- We do this because in the convex polytopes literature, it is standard to represent
the polytope as Ax < b, so it seemed best to use the same notation in order to make connections to
existing literature easier.

Algorithms

Define non-negative convex polytope K to be the solution to Ax < b. We are interested in sampling
uniformly from K.

The two Monte-Carlo Markov Chain (MCMC) sampling methods we implement are hit-and-run and
Dikin walk. MCMC methods begin at a starting point in K and wander through K according to a
specified algorithm. Every MCMC step depends only on the current location.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

To test the quality of our sample, we create multiple, independent “chains” from different starting
points in K and observe their “mixing”. The chains have mixed well if their values have repeatedly
overlapped with each other. If the chains have not mixed well, then we need to run the chains for
longer (i.e. sample more points). While good mixing does not guarantee that the sample is perfect,
poor mixing alone indicates a problem.

Starting point

MCMC random walks need a starting point, xp in K. walkr generates starting points using linear
programming. Specifically, the 1sei function of the limSolve package (den Meersche et al. (2009))
finds x which:

minimizes |Cx — d|?

subjectto Ax <b, this is our polytope K

We randomly generate matrix C and vector d. Solving this system generates an x which will usually
fall on the boundary of polytope K. We repeat this process 30 times and take an average of those
points, thereby generating one starting point xg.

Hit-and-run

Vempala (2005) provides an overview of the hit-and-run algorithm:

1. Set starting point xq as current point.
2. Generate a random direction d from the N dimensional unit-sphere.

3. Find the chord S through x(along the directions d and —d. Define end points s; and s; as the
intersection of the chord S with the edges of K. Because K is convex, the chord S will only
intersect it at two points. Parametrize the chord S by s1 + f(sp — s1), where t € [0,1].

4. Pick a random point x; along the chord S by generating ¢ from U[0, 1].
5. Set x; as current point.

6. Repeat algorithm until number of desired points sampled.

See Figure 5. walkr uses the har function from the hitandrun package (van Valkenhoef and Tervonen
(2015)) to implement hit-and-run. The hit-and-run algorithm asymptotically generates an uniform
sample in the convex polytope K. However, the mixing of hit-and-run becomes slower with increasing
dimensions in K. Slow mixing is observed when we run multiple chains from different starting points.
Instead of overlapping with each other, the individual chains tend to stay near their initial values.
To solve this problem, we must let the individual chains run for longer (i.e. sample more points).
However, as the dimensions of the polytope increase, the number of points we need to sample to
ensure adequate mixing increases exponentially.

Dikin walk

A Dikin walk is the second of two MCMC methods implemented in the walkr package. A Dikin walk
begins from a random starting point within the convex polytope K and then creates a Dikin ellipsoid
centered at the current point. It then samples a random point from that ellipsoid, one whose shape
and size are determined by both the current point and the shape of K.

Unlike hit-and-run, the Dikin walk does not sample uniformly over K. Instead, it is biased towards
points that are way from the edges of K (Kannan and Narayanan (2009)). This bias allows the chains
to mix more quickly than hit-and-run, and therefore, to work better in higher dimensions.

For non-negative convex polytope K, defined as all x for which Ax < b, define a; as the i" row
of A. Define x; and b; as the i element of x and b respectively. The dimensions of A are m = N
by n = N — (M +1), where M and N are the dimensions of A in Ax = b, the original problem
statement.

Log Barrier Function ¢:

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

(a) (b)

\
sl/N \\ /\ \\\
YKo S X \
// \1 \ / \ \
\K X1 o~

© (d)

(e)

Figure 5: (a) The hit-and-run algorithm begins with an interior point xy. (b) A random direction is
selected. (c) The chord along that direction is calculated. (d) Then, pick a random point along that
chord and move there as the new point. (e) The algorithm is repeated to sample many points.

m

¢(x) =)_ —log(b; —aj x)

i=1

The log-barrier function of Ax < b measures how extreme or “close-to-the-boundary” a point x € K s,
because the negative log tends to infinity as its argument goes to zero. Since Ax < b, for every row in
Ax < b, b; > a] x. Therefore, as x approaches the boundary of K (as a! x approaches b;), the value of ¢
approaches infinity. Hence, this is a barrier function. It is also exactly because of this that the starting
point cannot on the boundary of K, where b; = aiTx, but must be in the interior of K.

Hessian of Log Barrier H,:

Hy = V2p(x) = ... = ATDA, where:
1
D=di
ns(e

Hy is a n x n linear operator. D is a m x m diagonal matrix. The Hessian matrix (Hy) contains the
second derivatives of the function ¢ (x) with respect to the vector x. The Hessian describes the shape
of the local landscape at x.

Dikin ellipsoid DY

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

Define the Dikin ellipsoid centered at xy with radius r as:
Di, = {y | (y—x0)"Hy(y—x0) <r?

The Hessian Hy, at x is used as a local norm, which we call the “Hessian norm”. The Dikin ellipsoid
with radius 1 is the collection of all the points around xy whose difference with xq (¥ — xp) is within
the unit threshold with respect to the Hessian norm.

The closer the point xg is to the boundary of polytope K, the larger the value of the Hessian norm, and
thus, the smaller the range of allowed points given a unit threshold, which leads to a smaller Dikin
ellipsoid. The further the point xg is from the boundary of polytope K, the smaller the Hessian norm
and, therefore, the larger the Dikin ellipsoid.

For intuition, consider the single variable case. Recall that the log barrier function is of the form
—log(z), where z = aiTx — b;. The Hessian is the generalized second derivative, and the second

derivative of — log(z) is Zl—z The closer z is to zero (i.e., the closer x is to the boundary), the larger the
norm.

Algorithm

1. Begin with a point xg € K. This starting point must be in the polytope and not on its edge. If xg
is on the boundary, then a;xy = b; for some i, and consequently, the log-barrier and its Hessian
would be infinity.

Construct Dy,, the Dikin ellipsoid centered at xj.
Pick a random point y from Dy,.

Construct Dy, the Dikin ellipsoid centered at y.

ISAE R

If xo ¢ Dy, then reject y. That is, if the current point xj is not in the Dikin ellipsoid of the
potential point y, then we reject the point y. The purpose of this check is to avoid making a step
that is too large.

6. If xg € Dy, then accept y with probability min(1, \/ det(H,)). \/ det(H,) volume of Dr,

det(Hy,) det(H,;U) is equal to volume of Dy,
Recall that the volume of a Dikin ellipsoid reflects how close to the boundary its center is. The
closer its center is to the boundary, the smaller its volume. This transition probability prevents
the Dikin walk from concentrating in the “central region” of the polytope. Because we already
know that xq € Dy, the step is not too extreme. If the ratio of the volumes is greater than 1, that
means the potential point y is closer to the boundary than xj is. In this case, we accept y with
probability 1. If the ratio is smaller than 1, then x is closer to the boundary than y is. In this

case, we accept y depending on the ratio of their ellipsoids’ volumes .

7. Repeat until obtained number of desired points.

2We do not need to worry that the accepted point y is not in K, because when we set r = 1, any Dikin ellipsoid
centered at xp € K (x¢ not on the boundary) will be fully contained in K (see Kannan and Narayanan (2009) section
2.1.4)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

10

(e) ®

Figure 6: (a) The Dikin walk begins by constructing the Dikin ellipsoid at the starting point xy. This
point cannot be on the boundary of the polytope, otherwise the log-barrier and its Hessian would both
be infinity. (b) An uniformly random point y is generated in the Dikin ellipsoid centered at xg. (c) If
point xg is not in the Dikin ellipsoid centered at y, then reject y. (d) If point xp is contained in the Dikin
det(Hy)
det(Hy,)
accepted y, we set y as our new point, x1. (f) The algorithm is repeated to sample many points.

ellipsoid centered at y, then accept y with probability min(1,). (€) Once we've successfully

See Figure 6. Dikin mixes much faster than hit-and-run does, especially in higher dimensions. This is
because the mixing of Dikin is independent of the geometry of polytope K, whereas hit-and-run mixes
slower in “skinny” regions of K (Kannan and Narayanan (2009)). Dikin’s quick mixing comes at the
cost of non-uniform sampling. Because the log-barrier function and Hessian prevent the Dikin walk
from reaching points that are very close to the boundary of K, the resulting sample is concentrated in
regions that are away from the boundary. See Figure 7 for an illustration.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

11

Hit—and—-run: 2D-simplex Dikin walk: 2D-simplex
500 - 500 -
400 - 400 -
€ 300- € 300 -
> >
8 200- 8 200 -
100 - 100 -
0- 0-
1 1 1 1 1 1 1 1 1 1
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Value of x; Value of x;
Hit—and—run: 5D—-simplex Dikin walk: 5D-simplex
1000 - 1000 -
750 - 750 -
§ 1=
a 500 - 8 500 -
(&} o
250 - 250 -
0- 0-
1 1 1 1 1 1 1 1
0.00 0.25 0.50 0.75 0.0 0.2 0.4 0.6
Value of x; Value of x;
Hit—and—-run: 10D-simplex Dikin walk: 10D-simplex
2000 - 2000 -
1500 - 1500 -
§ IS
3 1000 - g 1000 -
(&] o
500 - 500 -
0- 0-
1 1 1 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.4 0.5
Value of x; Value of x;

Figure 7: We use the two sampling algorithms, hit-and-run and Dikin walk, on the 2D, 5D, and
10D-simplex. We show the histograms for the first parameter, x1, because the distribution for every
parameter should be the same (there is nothing special about x1). Every histogram contains 10000
sampled points. The 2D-simplex is the line segment described by x; + x, = 1 and x; greater equal
to 0. For the 2D-simplex, we see that hit-and-run samples uniformly across [0,1], while Dikin walk
concentrates in regions away from the center. For higher dimensions (5D and 10D histograms),
consider the 3D-simplex analogy. The 3D-simplex (Figure 1) is a triangle in three dimensional space. If
we look at the distribution for x1, that is equivalent to projecting this triangle onto the x; axis. As the
samples are drawn uniformly from the 3D-simplex, there are more points near 0 than near 1. Therefore,
we see this downward sloping distribution. In the 5D and 10D-simplex cases, we see that hit-and-run
samples uniformly, while Dikin again concentrates in regions away from the edges.

The walkr package uses Repp and ReppEigen (Eddelbuettel and Francois (2011), Bates and Eddel-
buettel (2013)) to implement Dikin walk because of their support for faster matrix multiplication,
inversion, and determinant calculation. This improvement in speed is especially important when
sampling from A with many columns, corresponding to polytopes in higher dimensions.

To improve the mixing of a sample, there are two main techniques: thinning and burn-in. First, to
“thin,” we only save each thin'" sample. Second, the “burn-in” is the portion of the total sample that is
discarded. This is an effective technique when the starting point is in a corner or narrow region in the
polytope. We must give time for the random walk to escape the corner and reach other parts of the
sample space. For a discussion about techniques to improve MCMC sampling, see Stan Development
Team (2015).

To quantitatively examine the mixing, we use the Gelman-Rubin diagnostic on multiple chains
from diverse starting points (Gelman and Rubin (1992)). The general idea is that we measure the
variance within each chain and the variance between the chains. If the variance between the chains
is substantially larger than the variance within each chain, then the Gelman-Rubin diagnostic (R)
indicates that the mixing is poor and that, therefore, the chains should be longer. That is, poor mixing
means that we need larger samples.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

12

Using walkr

The walkr package has one main function walkr which samples points. walkr has the following
parameters:

* Ais the left hand side of the matrix equation Ax = b.
* b is the right hand side of the matrix equation Ax = b.

* points is the number of points returned. The total number of points sampled may be more than
this because of thinning and burn-in.

e method is the method of sampling: either "hit-and-run” or "dikin".
e thin is the thinning parameter. Every thin'h point is returned. Default is 1.

* burn is the burn-in parameter (as a percentage). The first burn points are deleted from the final
sample. Default is 0.5, for 50%.

* chains is the number of indepedent random walks we create, each from a different starting
point. By default, walkr returns a matrix which consists of the individual chains combined
together. Every column is a sampled point.

* ret.format is the return format of the sampled points. If "matrix"” (the default), then a single
matrix of points is returned. If "1ist”, then a list of chains is returned, with each chain as a
matrix of points. Every column is a sampled point.

Consider the 3D simplex:
A <- matrix(1, ncol = 3)
b <-1
sampled_points <- walkr(A = A, b = b, points = 1000,
method = "hit-and-run”, chains = 5, ret.format = "matrix")

Sampling from higher dimensions follows the same syntax. Note that walkr automatically intersects
Ax = b with the N-simplex, so that the user does not have to include the simplex constraint in Ax = b.
In this way, walkr is not a general tool for sampling from convex polytopes. Instead, it specializes
in solving a special kind of convex polytope, one created by the intersection of Ax = b and the
N-simplex.
A <- matrix(sample(c(9,1,2), 40, replace = TRUE), ncol = 20)
b <- (0.5, 0.3)
sampled_points <- walkr(A = A, b = b, points = 10000, chains = 5,

method = "hit-and-run”, ret.format = "list")

Warning in walkr(A = A, b = b, points = 10000, chains = 5, method = "hit-and-run”,
there are parameters with rhat > 1.1, you may want to run your chains for longer

walkr warns the user if the chains have not mixed “well-enough” according to the Gelman-Rubin R
values. We can ensure better mixing by increasing the amount of thinning, and hence the number of
total points sampled.
sampled_points <- walkr(A = A, b = b, points = 1000, chains = 5, thin = 500,

method = "hit-and-run”, ret.format = "list")

Alternatively, we could use Dikin, which mixes better.

sampled_points <- walkr(A = A, b = b, points = 1000, chains = 5, thin
method = "dikin"”, ret.format = "list")

10,

Dikin walk only required thin to be 10. Running hit-and-run with a thin of 19, 100, or even 250
would have produced a warning. This is evidence of Dikin mixing faster than hit-and-run. For higher
dimensions of A, Dikin requires fewer points (or equivalently, a lower value for thin) to satisfy R than
hit-and-run does.

Now, sampled_points contain 1000 sampled points. We can visualize the MCMC random walks by
calling the explore_walkr function, which launches a shiny interface from shinystan (Gabry (2015)).
Note that when calling explore_walkr, the "ret.format” argument from walkr must be "list”,
because the individual chains must be separated out. Figure 8 shows a traceplot from the shinystan
interface.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE

13

Trace

}

/”W Jf ‘M ¥ *Lul 1% "L".‘ '

Figure 8: A screenshot from the shinystan interface called from explore_walkr. The traceplot is a plot
of the value of different chains against the iteration number. It allows us to visualize the mixing of
different chains. This particular sample comes from the sampled_points using the Dikin walk.

Conclusion

The walkr package samples from the intersection of two spaces. The first space is all possible vectors
x that satisfy matrix equation Ax = b (A is M x N, with M < N), which defines M unbounded
hyperplanes in RN, The second space is the N-simplex, defined as x; + x» + x3 4+ ... + xy = 1 and
x; > 0. The intersection of these two spaces is a non-negative convex polytope.

walkr samples from a non-negative convex polytope using two Monte-Carlo Markov Chain (MCMC)
algorithms: hit-and-run and Dikin walk. Hit-and-run guarantees a uniform sample asymptotically,
but mixes more slowly. Dikin walk samples non-uniformly, avoiding points near the boundary of the
polytope.

MCMC methods begin at a starting point within the polytope and “wander” through the solution
space. Every MCMC step depends only on the current location. To examine the quality of the samples,
we create multiple chains, each from a different starting point. The “mixing” of different chains is
one way of examining the quality of the samples. Dikin mixes much faster than hit-and-run does,
especially in higher dimensions.

The major problem with our current implementaton is that run-time becomes unwieldy as the number
of columns N in A increases. For lower dimensions of A (below 50) hit-and-run and Dikin can both
generate a well-mixed sample within a few minutes. However, for dimensions near 500, it takes Dikin
a few hours to generate a good sample, and hit-and-run much longer. In applications, we recommend
using Dikin walk instead of hit-and-run for values of N greater than 50, assuming that a bias against
the edges of the polytope is acceptable.

One possible extension to walkr involves parallelization. Especially for Dikin, the majority of the run-
time is spent on matrix multiplication and inversion. Since matrix multiplication can be parallelized,
the run-time issue in higher dimensions could be mitigated by extending the code to allow for the use
of multiple cores.

Authors

Andy Yao

Mathematics and Physics
Williams College

3123 Paresky Center
Williamstown, MA 01267
United States
andy.yaol7@gmail.com

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

mailto:andy.yao17@gmail.com

CONTRIBUTED RESEARCH ARTICLE

14

David Kane

Harvard University

1QSS

1737 Cambridge Street

CGIS Knafel Building, Room 350
Cambridge, MA 02138

United States
dave.kane@gmail.com

Bibliography
D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package.
Journal of Statistical Software, 52(5):1-24, 2013. URL http://www. jstatsoft.org/v52/105/. [p11]

K. V. den Meersche, K. Soetaert, and D. V. Oevelen. xsample(): An r function for sampling linear
inverse problems. Journal of Statistical Software, Code Snippets, 30(1):1-15, 2009. ISSN 1548-7660. URL
http://www.jstatsoft.org/v30/col. [p7]

D. Eddelbuettel and R. Frangois. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1-18,2011. URL http://www. jstatsoft.org/v40/i08/. [pl1]

J. Gabry. Interactive Visual and Numerical Diagnostics and Posterior Analysis for for Bayesian Models, 2015.
[p12]

A. Gelman and D. Rubin. Inference from iterative simulation using multiple sequences. Statistical
Science, 7(4):457-511, 1992. [p11]

R. Kannan and L. Lovasz. Random Walks and a Volume Algorithm for Convex Bodies. Random
Structures and Algorithms, 1997. [p1]

R. Kannan and H. Narayanan. Random Walks on Polytopes and an Affine Interior Point Method for
Linear Programming. Mathematics of Operations Research, 2009. [p2, 7,9, 10]

S.]. Leon. Linear Algebra with Applications. Pearson, 2014. [p4]
Stan Development Team. Stan Modeling Language: User’s Guide and Reference Manual. Stan, 2015. [p11]

G. van Valkenhoef and T. Tervonen. hitandrun: "Hit and Run” and "Shake and Bake"” for Sampling
Uniformly from Convex Shapes. CRAN, 2015. [p7]

S. Vempala. Geometric random walks: A survey. Combinatorial and Computational Geometry, 52:573-612,
2005. [p2, 7]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

mailto:dave.kane@gmail.com
http://www.jstatsoft.org/v52/i05/
http://www.jstatsoft.org/v30/c01
http://www.jstatsoft.org/v40/i08/

	walkr: MCMC Sampling from Non-Negative Convex Polytopes
	Introduction
	Three dimensional example
	Four dimensional example
	x-space and -space
	Step 1: Combine the simplex equality with the original Ax=b
	Step 2: Solve for the null space and transform to -space
	Step 3: Include the simplex inequalities
	Four dimensional transformation example

	Algorithms
	Starting point

	Hit-and-run
	Dikin walk
	Algorithm

	Using walkr
	Conclusion
	Authors

