
Example 2: Using an Apple Xgrid to Fit Latent Class Models Using

Add-on Packages

Sarah C. Anoke, Yuting Zhao, Nicholas J. Horton∗

Department of Mathematics and Statistics
Smith College

July 18, 2011

Contents

1 Introduction 1

2 Latent Class Analysis 2

3 Using the Grid for a Simulation Study 2
3.1 Directory Structure . 2
3.2 Retrieval and Analysis of Results . 4

4 Installation of Add-On Packages 7

5 Acknowledgement 10

6 Bibliography 10

1 Introduction

Many scientific computations can be sped up by dividing them into smaller tasks and distributing
the computations to multiple systems for simultaneous processing. Such a process is referred to as
parallel computing. When performed on existing grids of computers, this method can dramatically
increase computation speed. Several solutions exist to facilitate this type of computation within
R, and we describe one such solution here, that involves using the Apple Xgrid (Apple, 2009), a
parallel computing environment.

We created the xgrid package to provide a simple interface to this distributed computing system
(Horton et al., 2011). The package facilitates use of an Apple Xgrid for distributed processing
of a job with many independent repetitions, by simplifying task submission (or gridstuffing) and
collation of results.

∗Corresponding author: nhorton@smith.edu

1

We demonstrate use of our package in the context of a real statistical problem. This example is
representative of what might be encountered in the field, as it involves simulations that would or-
dinarily take days to complete. It involves study of the properties of latent class models, which are
used to determine better schemes for classification of eating disorders (Keel et al., 2004). The de-
velopment of an empirically-created eating disorder classification system is of public health interest
as it may help identify individuals who would benefit from diagnosis and treatment.

2 Latent Class Analysis

As described by Collins and Lanza (2009), LCA is used to identify the subgroups in a population.
There are several criteria used to evaluate the fit of a given model, including the Akaike Information
Criterion (AIC), the Bayesian Information Criterion (BIC), the Consistent Akaike Information
Criterion (cAIC), and the Sample Size Adjusted Bayesian Information Criterion (aBIC). These
criteria are useful, but further guidance is needed for researchers to choose between them, as well
as better understand how their accuracy is affected by methodological factors encountered in eating
disorder classification research, such as unbalanced class size, sample size, missing data, and under-
or overspecification of the model. Swanson et al. (2011) undertook a comprehensive review of these
model criteria, including a full simulation study to generate hypothetical data sets and investigate
how each criterion behaved in a variety of statistical environments. In this example, we replicate
some of their simulations using an Apple Xgrid to grid to speed up the computation time.

3 Using the Grid for a Simulation Study

Following the approach of Swanson et al., we generated “true models” where there was an arbitrary
4-class structure (with balanced number of observations in each class). This structure was composed
of 10 binary indicators in a simulated data set of size 300. The model was fit using the poLCA()

function in the poLCA (polytomous latent class analysis) package. Separate latent class models
were fit specifying the number of classes, ranging from 2 to 6. For each simulation, we determined
the lowest values of BIC, AIC, cAIC and aBIC and recorded the class structure associated with
each value.

Swanson and colleagues found that for this set of parameter values, the AIC and aBIC picked the
correct number of classes more than half the time (see Table 1).

This example illustrates the computational burden of undertaking simulation studies to assess the
performance of modern statistical methods, as several minutes are needed to undertake each of the
single iterations of the simulation (which may explain why Swanson and colleagues only fit 100
simulations for each of their scenarios).

3.1 Directory Structure

Our first step is to set up a directory structure for our simulation (see Figure 1).

The first item is the folder ‘input’, which contains two files that will be run on the remote agents.
The first of these files, ‘job.R’ (Figures 2 and 3), defines the code to run a particular task. In
this case, ‘job.R’ defines two functions. The function datagen() generates a 4-class data set. The

2

Class

Criteria Acronym 2 3 4 5 6+

Bayesian Information Criterion BIC 49% 44% 7% 0% 0%

Akaike Information Criterion AIC 0% 0% 53% 31% 16%

Consistent Akaike Information
Criterion

cAIC 73% 25% 2% 0% 0%

Sample Size Adjusted Bayesian
Information Criterion

aBIC 0% 5% 87% 6% 2%

Table 1: Percentage of times (out of 100 simulations) that a particular number of classes was selected
as the best model (where the true data derive from 4 distinct classes), when n=300, reprinted from
Swanson et al. (2011). Note that a perfect criterion would have 100% under class 4.

Figure 1: File structure to access the grid

3

sample size of this data set is specified by the argument samplesize and the number of indicators
is specified by dim. The function job() takes six arguments: param specifies the sample size of the
data set; smallclass and bigclass define the range of class structures; dim specifies the number
of indicators; nrep defines the number of times the poLCA model is estimated for each data set;
and ntask specifies how many tasks to run within each job. The function job() calls datagen() to
generate a data set, and fits a model to these data using poLCA(). It returns a data frame containing
the class structure (within the range of smallclass and bigclass) predicted by each information
criterion (BIC, AIC, cAIC and aBIC).

The folder ‘input’ also contains ‘runjob.R’ (Figure 4), which retrieves and stores command line
arguments from the controller, and passes them to job(). The results from the completed job are
saved as res0, which is subsequently saved to the ‘output’ folder.

The folder ‘output’ will contain the results from the simulations. After the completion of each job,
the results are saved to a file in this directory. If this directory is created manually, it should be
empty. If not created manually, the xgrid package will create it.

The next item in the directory structure is ‘simulation.R’ (Figure 5), which contains the R script
run on the client machine that calls xgrid() from the package xgrid. This function submits the
simulation to the grid for calculation. Results from all jobs are returned as one object, res.

3.2 Retrieval and Analysis of Results

Figures 6 and 7 together demonstrate an example of what to expect before and after completing
all simulations.

At the beginning of Figure 6, we see the expected directory structure. We then call xgrid() to send
numsim=20 simulations to the grid for calculation. After the completion of the entire simulation
study, results from all numsim simulations are collated and returned by the xgrid() function as the
object res. This object is also saved as the file ‘RESULTS.rda’ at the top of the directory structure
(as seen in Figure 7).

Figure 7 also displays an example of what would be seen in the ‘output’ folder. As expected, there
are twenty files of the form ‘RESULT-1000#’, which contain the results from each individual job.
The second set of twenty files (e.g. ‘runjob.RRESULT-1000#.Rout’) contain the code that was run
to generate the corresponding result file.

In this example, res is a data frame with numsim rows (one row for each simulation) and five
columns (as defined in the return statement of ‘job.R’). In Figure 6, we list the dimensions of res
and summarize the results using apply().

The output generated by apply() is also as expected. For res$samplesize, we see that the value
200 appears 20 times, once for each simulation. The information criterion bic chose a 2-class
structure 13 times and a 3 class structure 7 times – reasonably close to what we’d expect based on
the results of Swanson et al. (Table 1).

4

code adapted from Swanson et al. (2011)

library(scatterplot3d, lib.loc="./rlibs")

library(poLCA,lib.loc="./rlibs")

generates data set of size ’samplesize’

and ’dim’ indicators

with a predefined class structure

datagen = function(samplesize=300, dim=10) {

if(samplesize %% 4 == 0) {

subset = samplesize / 4

} else {

cat("Error: samplesize must be divisible by the number of classes 4.")

}

predetermining the 4-class structure

values from Swanson et al. (2011)

class1 = c(1.45, -3.48, 0.04, 1.05, -0.49,

-1.10, -2.44, -1.99, -2.75, -3.48)

class2 = c(-0.1, 1.38, 1.00, 1.06, 1.28,

0.48, 0.66, 0.43, 0.87, 0.16)

class3 = c(1.28, -0.07, -0.45, -1.06, 0.19,

1.19, -0.83, 0.91, -1.12, 2.00)

class4 = c(0, -2.00, -1.69, 0.31, 0,

-0.58, 1.06, -1.51, -2.00, 0.63)

type1 = exp(class1) / (1 + exp(class1))

type2 = exp(class2) / (1 + exp(class2))

type3 = exp(class3) / (1 + exp(class3))

type4 = exp(class4) / (1 + exp(class4))

x = matrix(runif(samplesize * dim), samplesize)

x[(0 * subset + 1) : (1 * subset),] =

t(t(x[(0 * subset + 1) : (1 * subset),]) < type1) * 1

x[(1 * subset + 1) : (2 * subset),] =

t(t(x[(1 * subset + 1) : (2 * subset),]) < type2) * 1

x[(2 * subset + 1) : (3 * subset),] =

t(t(x[(2 * subset + 1) : (3 * subset),]) < type3) * 1

x[(3 * subset + 1) : (4 * subset),] =

t(t(x[(3 * subset + 1) : (4 * subset),]) < type4) * 1

ds = as.data.frame(x + 1)

return(ds)

}

Figure 2: Contents of ‘job.R’, part 1 – the function datagen(). This code, as well as that of Figure
3, should be in one file entitled ‘job.R’.

5

job = function(ntask, param, dim=10, smallclass=2, largeclass=6, nrep=100) {

diff = largeclass - smallclass + 1

f = cbind(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10) ~ 1 #LCA formula

allbic = rep(0, ntask)

allaic = rep(0, ntask)

allcaic = rep(0,ntask)

allabic = rep(0,ntask)

bicmat = matrix(nrow=ntask, ncol=diff)

aicmat = matrix(nrow=ntask, ncol=diff)

caicmat = matrix(nrow=ntask, ncol=diff)

abicmat = matrix(nrow=ntask, ncol=diff)

for (j in 1:ntask) {

ds = datagen(samplesize=as.numeric(param), dim=dim)

bic = rep(0,diff)

aic = rep(0,diff)

caic = rep(0,diff)

abic = rep(0,diff)

for (i in smallclass:largeclass) {

lc = poLCA(f, data=ds, nclass=i, graphs=FALSE, verbose=FALSE, nrep=nrep)

bic[i-1] = lc$bic

aic[i-1] = -2 * lc$llik + 2 * lc$npar

caic[i-1] = -2 * lc$llik + lc$npar * log(lc$N) + 1

abic[i-1] = -2 * lc$llik + lc$npar * log((lc$N + 2) / 24)

}

bicmat[j,] = bic

minbic = which.min(bic) + 1

allbic[j] = minbic

aicmat[j,] = aic

minaic = which.min(aic) + 1

allaic[j] = minaic

caicmat[j,] = caic

mincaic = which.min(caic) + 1

allcaic[j] = mincaic

abicmat[j,] = abic

minabic = which.min(abic) + 1

allabic[j] = minabic

}

rowname = rep(param, ntask)

res = data.frame(samplesize=rowname, bic=allbic, aic=allaic,

caic=allcaic, abic=allabic)

return(res)

}

Figure 3: Contents of ‘job.R’, part 2 – the function job(). This code, as well as that of Figure 2,
should be in one file entitled ‘job.R’.

6

source("job.R")

processargs is expecting three arguments:

1) number of tasks to run within this job

2) parameter to pass to the function

3) place to stash the results when finished

processargs = function() {

args = commandArgs(trailingOnly=TRUE)

cat("args=", args)

return(list(ntask=as.numeric(args[1]), param=args[2],

resfile=args[3]))

}

arg = processargs()

res0 = job(arg$ntask, param=arg$param)

stash the results

save(res0, file=arg$resfile)

Figure 4: Contents of ‘runjob.R’

library(xgrid)

run the simulation

res = xgrid(Rcmd="runjob.R", param=300, numsim=20,

ntask=1, verbose=FALSE)

Figure 5: Contents of ‘simulation.R’

4 Installation of Add-On Packages

A complication of this example is that fitting LCA in R requires the use of add-on packages. If the
user of the grid has administrative privileges on the individual machines, any needed packages can
be installed in the usual manner. However, if no administrative access is available, it is possible
to utilize such packages within this setup by manually installing them in the ‘input/rlibs’ directory
and loading them within a given job. In this example, we use the poLCA (polytomous latent class
analysis) package and its supporting packages (e.g. scatterplot3d, MASS) with the Apple Xgrid
to conduct our simulation. Below we enumerate how to make an individual package available to a
job running on a given agent.

Download the appropriate distribution file from CRAN. This file will end in .tar.gz, which
denotes a compressed archive file.

Install the distribution file into the directory ‘input/rlibs’. This can be done using the command
tar zxf poLCA 1.3.1.tgz or its equivalent command R CMD INSTALL poLCA 1.3.1.tgz -l

input/rlibs.

Access the add-on package within a job running on an agent. This is done by using the lib.loc op-
tion within the standard invocation of library. For instance, the command library(poLCA,

lib.loc="./rlibs") was used in this example.

It should be noted that the package will need to shipped over to the agent for each job, which may
be less efficient than installing the package once per agent in the usual manner (but the latter option
may not be available unless the grid user has administrative access to the individual agents).

7

> list.files()

[1] "input" "output" "simulation.R"

> list.files("input")

[1] "job.R" "rlibs" "runjob.R"

> res = xgrid(grid="mygrid.myschool.edu", auth="myauth", Rcmd="runjob.R",

param=200, numsim=20, ntask=1, verbose=FALSE)

> dim(res)

[1] 20 5

> apply(res, 2, table)

$samplesize

200

20

$bic

2 3

13 7

$aic

4 5 6

8 9 3

$caic

2

20

$abic

4 5 6

12 7 1

Figure 6: Expected console output, part 1 – before and after calling xgrid() (see Figure 7 for part
2)

8

> list.files()

[1] "RESULTS.rda" "input" "job.err" "job.out" "output"

[6] "simulation.R"

> list.files("output")

[1] "RESULT-10000" "RESULT-10001"

[3] "RESULT-10002" "RESULT-10003"

[5] "RESULT-10004" "RESULT-10005"

[7] "RESULT-10006" "RESULT-10007"

[9] "RESULT-10008" "RESULT-10009"

[11] "RESULT-10010" "RESULT-10011"

[13] "RESULT-10012" "RESULT-10013"

[15] "RESULT-10014" "RESULT-10015"

[17] "RESULT-10016" "RESULT-10017"

[19] "RESULT-10018" "RESULT-10019"

[21] "runjob.RRESULT-10000.Rout" "runjob.RRESULT-10001.Rout"

[23] "runjob.RRESULT-10002.Rout" "runjob.RRESULT-10003.Rout"

[25] "runjob.RRESULT-10004.Rout" "runjob.RRESULT-10005.Rout"

[27] "runjob.RRESULT-10006.Rout" "runjob.RRESULT-10007.Rout"

[29] "runjob.RRESULT-10008.Rout" "runjob.RRESULT-10009.Rout"

[31] "runjob.RRESULT-10010.Rout" "runjob.RRESULT-10011.Rout"

[33] "runjob.RRESULT-10012.Rout" "runjob.RRESULT-10013.Rout"

[35] "runjob.RRESULT-10014.Rout" "runjob.RRESULT-10015.Rout"

[37] "runjob.RRESULT-10016.Rout" "runjob.RRESULT-10017.Rout"

[39] "runjob.RRESULT-10018.Rout" "runjob.RRESULT-10019.Rout"

Figure 7: Expected console output, part 2 – results after calling xgrid() (see Figure 6 for part 1).
Note that files ‘job.err’ and ‘job.out’ are output files unnecessary for the interpretation of results,
but listed here for completeness.

9

5 Acknowledgement

This material is based in part upon work supported by the National Institute of Mental Health
(5R01MH087786-02) and the US National Science Foundation (0920350 and 0721661).

6 Bibliography

Apple. Mac OS X Server: Xgrid Administration and High Performance Computing (Version 10.6
Snow Leopard). Apple Inc, 2009.

L. M. Collins and S. T. Lanza. Latent Class and Latent Transition Analysis: With Applications in
the Social, Behavioral, and Health Sciences. Wiley, 2009.

N. J. Horton, S. C. Anoke, Y. Zhao, and H. Jaeger. Xgrid and R: Parallel distributed processing
using heterogeneous groups of Apple computers. In revision, 2011.

P. K. Keel, M. Fichter, N. Quadflieg, C. M. Bulik, M. G. Baxter, L. Thornton, K. A. Halmi,
A. S. Kaplan, M. Strober, D. B. Woodside, S. J. Crow, J. E. Mitchell, A. Rotondo, M. Mauri,
G. Cassano, J. Treasure, D. Goldman, W. H. Berrettini, and W. H. Kaye. Application of a latent
class analysis to empirically define eating disorder phenotypes. Archives of General Psychiatry,
61(2):192–200, February 2004.

S. A. Swanson, K. Lindenberg, S. Bauer, and R. D. Crosby. A Monte Carlo investigation of factors
influencing latent class analysis: An application to eating disorder research. In press, 2011.

10

	Introduction
	Latent Class Analysis
	Using the Grid for a Simulation Study
	Directory Structure
	Retrieval and Analysis of Results

	Installation of Add-On Packages
	Acknowledgement
	Bibliography

