
Package ‘MonteCarloSEM’
April 5, 2024

Type Package

Title Monte Carlo Data Simulation Package

Version 0.0.8

Description Monte Carlo simulation allows testing different conditions given to the correct struc-
tural equation models. This package runs Monte Carlo simulations under different condi-
tions (such as sample size or normality of data). Within the package data sets can be simu-
lated and run based on the given model.
First, continuous and normal data sets are generated based on the given model. Later Fleish-
man's power method (1978) <DOI:10.1007/BF02293811> is used to add non-normality if exists.
When data generation is completed (or when gener-
ated data sets are given) model test can also be run.
Please cite as ``Orçan, F. (2021). MonteCarloSEM: An R Package to Simulate Data for SEM. In-
ternational Journal of Assessment Tools in Education, 8 (3), 704-713.''

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.1

Imports Matrix, stats, utils, lavaan

Copyright Fatih Orcan, Kahramanmaras Sutcu Imam University, Turkey

NeedsCompilation no

Author Fatih Orcan [aut, cre] (<https://orcid.org/0000-0003-1727-0456>)

Maintainer Fatih Orcan <fatihorcan84@gmail.com>

Repository CRAN

Date/Publication 2024-04-05 09:52:59 UTC

R topics documented:
categorize . 2
fcors.value . 3
fit.simulation . 3
loading.value . 5
MAR.data . 6

1

https://doi.org/10.1007/BF02293811
https://orcid.org/0000-0003-1727-0456

2 categorize

MCAR.data . 7
MNAR.data . 8
sim.categoric . 9
sim.normal . 10
sim.skewed . 11

Index 13

categorize This function uses pre-given data sets to create categorical data sets
for given thresholds.

Description

Previously simulated data sets are utilized to create categorical data sets by the given thresholds.

Usage

categorize(f.loc, threshold, dataList = "Data_List.dat")

Arguments

f.loc File location. Generated data sets will be saved at the user-defined location.

threshold The threshold values.

dataList List of the names of data sets generated earlier either with the package functions
or any other software.

Author(s)

Fatih Orçan

Examples

tres<-c(-Inf, -1.645, -.643, .643, 1.645, Inf) # five categories
categorize(f.loc=tempdir(), threshold = tres)

fcors.value 3

fcors.value This function specifies the correlation matrix between the factors.

Description

The user specifies the correlation matrix between the factors. The values entered should be between
-1 and +1. The values can be given by column or row but should be given in order. Please see the
example for a correlation among three factors. In case there is only one factor following line should
be entered "cors.value(nf=1, cors=c(1,1,1))"

Usage

fcors.value(nf, cors)

Arguments

nf the number of factor/s.

cors vector of the correlations.

Value

The function returns the factor correlation matrix. This is a symmetric matrix, which shows the
correlation values among the factors in the model.

Author(s)

Fatih Orcan

Examples

This example represents a three-factor CFA model
#
fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))

fit.simulation This function runs a model for simulated data by using the lavaan
package.

4 fit.simulation

Description

Generated data sets (Generated by sim.skewed() or sim.normal() functions) will be fitted to pre-
specified model. The lavaan package is used to fit the model. After running the model, fit indices
and parameters estimated with their standard errors will be printed to a Comma Separated Values
(CSV) file. The name of the output file is "All_Results.csv". Each line in the file represents the
results of a simulation. The columns are self-explanatory but the second column (named Notes)
needs a more detailed explanation. This column shows if the model convergency. If the model is
converged without any problem the value will be "CONVERGE" If it is not converged the value
will be "NONCONVERGE" and all the values in the line will be "NA" If there are some kind of
warnings (such as negative variance) during the model run the value will be "WARNING" and based
on the warning type some of the values might be "NA". To run the simulation, previously generated
(either with the package functions or any other software) data sets and the list of the data sets (i.e.,
"Data_List.dat") should be located in the same folder in the working directory.

Usage

fit.simulation(
model,
PEmethod = "ML",
Ordered = FALSE,
dataList = "Data_List.dat",
f.loc,
missing = NULL

)

Arguments

model Lavaan model

PEmethod Parameter estimation method. The default is ML.

Ordered Logical, TRUE means that the data will be defined as ordered.

dataList List of the names of data sets generated earlier either with the package functions
or any other software.

f.loc File location. It indicates where the simulated data sets and "dataList" are lo-
cated.

missing as in the lavaan package (See lavOptions)

Author(s)

Fatih Orcan

Examples

Data needed to be generated at the first step.
fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.6,.6,.6,0,0,0,0,0,0,0,0,.4,.4))
sim.normal(nd=10, ss=100, fcors=fc, loading<-fl, f.loc=tempdir())

loading.value 5

Then simulation should be run at the second step.
lavaanM<-'
#CFA Model
f1 =~ NA*x1 + x2 + x3
f2 =~ NA*x4 + x5 + x6
f3 =~ NA*x7 + x8
#Factor Correlations
f1 ~~ f2
f1 ~~ f3
f2 ~~ f3
#Factor variance
f1 ~~ 1*f1
f2 ~~ 1*f2
f3 ~~ 1*f3
'
dl<-"Data_List.dat" # should be located in the working directory.

Note that this function uses data sets and the list files which were generated previously.
If there are no such a data sets and the list file, it will print an error message
saying "cannot open the connection"

fit.simulation(model=lavaanM, PEmethod="MLR", Ordered=FALSE, dataList=dl, f.loc=tempdir())

loading.value This function specifies the factor loading values.

Description

The user specifies the factor loadings as a matrix. The values should be given by column for each
factor. Columns represent factors and rows represent items. The values entered should be larger
than 0 and smaller than 1. Please see the example for a loading matrix for a three-factor model.

Usage

loading.value(nf, fl.loads)

Arguments

nf the number of factor/s.

fl.loads vector of factor loadings

Value

The function returns the factor loading matrix. The number of columns shows the number of factors
in the model. The rows show the number of items

Author(s)

Fatih Orçan

6 MAR.data

Examples

This example represents a three-factor CFA model
where the factors are indicated by 3, 3, and 2 items respectively.
#
loading.value(nf=3, fl.loads=c(.6,.6,.6,0,0,0,0,0,0,0,0,.7,.7,.7,0,0,0,0,0,0,0,0,.8,.8))

MAR.data This function inserts missingness (Missing at Random - MAR) into the
given data sets.

Description

Missing values (MAR) will be added to the generated data sets (Generated by sim.skewed() or
sim.normal() functions). Under MAR, the missingness was associated with the values of the vari-
able in the data set except itself. If baseV parameter was not given, two different and random
variables in the data set are selected, and the missing values are assigned based on the mean of the
two variables on the selected item. For example, if the data has 8 items and the second item will be
assigned MAR values, two items among the item 1, 3, 4, 5, 6, 7, and 8 were selected randomly, let’s
say items 5 and 7. The mean of the items was then calculated and the values were sorted. Then,
based on the given percent of missingness, 90 percent of the missing values were selected from the
top. The remaining 10 percent of missing values were assigned from the rest of the variable. For
example, let’s say the sample size was 300, and 20 percent of missingness was wanted (missing
count: 300x20 The missing values are shown as "NA" in the data files. The new data sets which
have missing values will be saved as a different data file. In each data file, the first column shows
sample numbers. The second and the other columns show actual data sets for each item. There will
be a file named "MAR_List.dat". The file includes the names of the data sets which has missing
values in it. Besides, a file named “Model_MAR_relations.dat” shows which item was associated
with which random items that were used for the MAR calculation.

Usage

MAR.data(
misg = NULL,
baseV = NULL,
perct = 10,
dataList = "Data_List.dat",
f.loc

)

Arguments

misg A vector of 0s and 1s for each item. 0 indicates non-missing and 1 indicates
items which have missing values. If misg is not indicated all items are consid-
ered as missing.

baseV A list of items that MAR will be calculated based on. It has to be match with the
misg parameter. If it is not given, two random items (except the variable itself)
will be selected and used to get MAR values for the given items.

MCAR.data 7

perct The percent of missingness. The default is 10 percent.

dataList List of the names of data sets generated earlier either with the package functions
or any other software.

f.loc File location. It indicates where the simulated data sets and "dataList" are lo-
cated.

Author(s)

Fatih Orcan

Examples

Data needed to be generated at the first step.

fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.6,.6,.6,0,0,0,0,0,0,0,0,.4,.4))
floc<-tempdir()
sim.normal(nd=10, ss=100, fcors=fc, loading<-fl, f.loc=floc)

Missing values were added at the second step.

mis.items<-c(1,0,1,1,0,0,0,0)
bV<-list(c(0,0,0,0,0,0,1,1),NA,c(0,0,0,0,0,1,1,0),c(0,0,0,0,0,1,1,1), NA,NA,NA,NA)
dl<-"Data_List.dat" # should be located in the working directory.
MAR.data(misg = mis.items, baseV=bV, perct = 20, dataList = dl, f.loc=floc)

MCAR.data This function inserts missingness (Missing Completely at Random -
MCAR) into the given data sets.

Description

Missing values (MCAR) will be added to the Generated data sets (Generated by sim.skewed() or
sim.normal() functions). Missing values are assigned at random and are shown as "NA" in the data
files. The new data sets which have missing values will be saved as a different data file. In each
data file, the first column shows sample numbers. The second and the other columns show actual
data sets for each item. There also be a file named "MCAR_List.dat". The file includes the names
of the data sets which has missing values in it.

Usage

MCAR.data(misg = NULL, perct = 10, dataList = "Data_List.dat", f.loc)

8 MNAR.data

Arguments

misg vector of 0s and 1s for each item. 0 indicates non-missing and 1 indicates items
that have missing values. If misg is not indicated all items are considered as
missing.

perct Percent of missingness. The default is 10 percent.

dataList List of the names of data sets generated earlier either with the package functions
or any other software.

f.loc File location. It indicates where the simulated data sets and "dataList" are lo-
cated.

Author(s)

Fatih Orcan

Examples

Data needed to be generated at the first step.

fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.6,.6,.6,0,0,0,0,0,0,0,0,.4,.4))
floc<-tempdir()
sim.normal(nd=10, ss=100, fcors=fc, loading<-fl, f.loc=floc)

Missing values were added at the second step.

mis.items<-c(1,1,1,0,0,0,0,0)
dl<-"Data_List.dat" # should be located in the working directory.
MCAR.data(misg = mis.items, perct = 20, dataList = dl, f.loc=floc)

MNAR.data This function inserts missingness (Missing Not at Random - MNAR)
into the given data sets.

Description

Missing values (MNAR) will be added to the Generated data sets (Generated by sim.skewed() or
sim.normal() functions). Under MNAR, the missingness was associated with the values of the
variable itself. In order to create MNAR, the variable was sorted first. Then, based on the given
percent of missingness, 90 percent of the missing values were selected from the top. The remaining
10 percent of missing values were assigned from the rest of the variable. For example, let’s say
the sample size was 300, and 20 percent of missingness was wanted (missing count: 300x20 The
missing values are shown as "NA" in the data files. The new data sets which have missing values
will be saved as a different data file. In each data file, the first column shows sample numbers.
The second and the other columns show actual data sets for each item. There also be a file named
"MNAR_List.dat". The file includes the names of the data sets which has missing values in it.

sim.categoric 9

Usage

MNAR.data(misg = NULL, perct = 10, dataList = "Data_List.dat", f.loc)

Arguments

misg vector of 0s and 1s for each item. 0 indicates non-missing and 1 indicates items
which have missing values. If misg is not indicated all items are considered as
missing.

perct Percent of missingness. The default is 10 percent.

dataList List of the names of data sets generated earlier either with the package functions
or any other software.

f.loc File location. It indicates where the simulated data sets and "dataList" are lo-
cated.

Author(s)

Fatih Orcan

Examples

Data needed to be generated at the first step.

fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.6,.6,.6,0,0,0,0,0,0,0,0,.4,.4))
floc<-tempdir()
sim.normal(nd=10, ss=100, fcors=fc, loading<-fl, f.loc=floc)

Missing values were added at the second step.

mis.items<-c(1,1,1,0,0,0,0,0)
dl<-"Data_List.dat" # should be located in the working directory.
MNAR.data(misg = mis.items, perct = 20, dataList = dl, f.loc=floc)

sim.categoric This function simulates (generates) categorical data sets by a given
Confirmatory Factor Analysis model.

Description

Based on a given Confirmatory Factor Analysis model, this function simulates data sets. In each data
file, the first column shows sample numbers. The second and other columns show actual simulated
data sets for each item. If the model has 2 factors and each factor has 3 items, for example, column
names will be something like "ID, F1_x1, F1_x2, F1_x3, F2_x1, F2_x2, F2_x3". On the other
hand, the number of rows shows the sample number of the data. Besides, there will be two more
files saved in the folder. First of them is "Model_Info.dat". This file includes factor correlation and
factor loading matrices. The second is "Data_List.dat". The file contains the names of the data sets
which were generated.

10 sim.normal

Usage

sim.categoric(
nd = 10,
ss = 100,
fcors,
loading,
f.loc,
threshold,
cont = "FALSE"

)

Arguments

nd Number of the data set, an integer.

ss Sample Size, an integer and larger than 10.

fcors The factor correlation matrix, a symmetric matrix. If one-factor model is used
this should be matrix(1,1,1).

loading The factor loading matrix. The column represents factors and non-zero rows
represent the number of items under each factor.

f.loc File location. Generated data sets will be saved at the user-defined location.

threshold The threshold values.

cont TRUE or FALSE: Indicating whether original continuous data will be saved or
not.

Author(s)

Fatih Orçan

Examples

fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.6,.6,.6,0,0,0,0,0,0,0,0,.4,.4))
tres<-c(-Inf, -1.645, -.643, .643, 1.645, Inf) # five categories

sim.categoric(nd=100,ss=100, fcors=fc,loading=fl, f.loc=tempdir(), threshold = tres)

sim.normal This function simulates (generates) data sets by a given Confirmatory
Factor Analysis model.

sim.skewed 11

Description

Based on a given Confirmatory Factor Analysis model, this function simulates data sets. In each data
file, the first column shows sample numbers. The second and other columns show actual simulated
data sets for each item. If the model has 2 factors and each factor has 3 items, for example, column
names will be something like "ID, F1_x1, F1_x2, F1_x3, F2_x1, F2_x2, F2_x3". On the other
hand, the number of rows shows the sample number of the data. Besides, there will be two more
files saved in the folder. First of them is "Model_Info.dat". This file includes factor correlation and
factor loading matrices. The second is "Data_List.dat". The file contains the names of the data sets
which were generated.

Usage

sim.normal(nd = 10, ss = 100, fcors, loading, f.loc)

Arguments

nd Number of the data set, an integer.

ss The sample Size, an integer and larger than 10.

fcors The factor correlation matrix, a symmetric matrix. If one-factor model is used
this should be matrix(1,1,1).

loading The factor loading matrix. The column represents factors and non-zero rows
represent the number of items under each factor.

f.loc File location. Generated data sets will be saved at the user-defined location.

Author(s)

Fatih Orçan

Examples

fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.6,.6,.6,0,0,0,0,0,0,0,0,.4,.4))

sim.normal(nd=10, ss=1000, fcors=fc, loading<-fl, f.loc=tempdir())

sim.skewed Simulates Data sets by a given Confirmatory Factor Analysis model.

Description

Based on a given Confirmatory Factor Analysis model, this function simulates data sets. In each data
file, the first column shows sample numbers. The second and other columns show actual simulated
data sets for each item. If the model has 2 factors and each factor has 3 items, for example, column
names will be something like "ID, F1_x1, F1_x2, F1_x3, F2_x1, F2_x2, F2_x3". On the other
hand, the number of rows shows the sample number of the data. Besides, there will be two more
files saved in the folder. First of them is "Model_Info.dat". This file includes factor correlation

12 sim.skewed

and factor loading matrices, a vector showing non-normal items and values of B, C, and D for
Fleishman’s power method. The second is "Data_List.dat". The file contains the names of the data
sets which were generated.

Usage

sim.skewed(
nd = 10,
ss = 100,
fcors,
loading,
nonnormal = NULL,
Fleishman = NULL,
f.loc

)

Arguments

nd Number of the data set, an integer.

ss The sample Size, an integer and larger than 10.

fcors The factor correlation matrix, a symmetric matrix. If one-factor model is used
this should be matrix(1,1,1).

loading The factor loading matrix. The column represents number of factors and non-
zero rows represent the number of items under each factor.

nonnormal A vector of 0 and 1s. 0 indicates normal, and 1 indicates non-normal data gen-
eration. If nonnormal is not indicated normal data will be generated.

Fleishman The B, C, and D values from Fleishman’s power method. A = -C.

f.loc File location. Generated data sets will be saved at the user-defined location.

Author(s)

Fatih Orçan

Examples

fc<-fcors.value(nf=3, cors=c(1,.5,.6,.5,1,.4,.6,.4,1))
fl<-loading.value(nf=3, fl.loads=c(.5,.5,.5,0,0,0,0,0,0,0,0,.3,.3,.3,0,0,0,0,0,0,0,0,.4,.4))
ifN<-c(1,1,1,0,0,0,0,0)
fleis<-c(1.0174852, .190995, -.018577) # The values for skewness=1 and kurtosis=1

sim.skewed(nd=10, ss=100, fcors=fc,loading=fl, nonnormal = ifN, Fleishman = fleis, f.loc=tempdir())

Index

categorize, 2

fcors.value, 3
fit.simulation, 3

loading.value, 5

MAR.data, 6
MCAR.data, 7
MNAR.data, 8

sim.categoric, 9
sim.normal, 10
sim.skewed, 11

13

	categorize
	fcors.value
	fit.simulation
	loading.value
	MAR.data
	MCAR.data
	MNAR.data
	sim.categoric
	sim.normal
	sim.skewed
	Index

