Package 'POET'

October 12, 2022

POET	Principal Orthogonal ComplEment Thresholding (POET) method	
Index		7
	POET	1 3 5
R top	ics documented:	
NeedsC	ompilation no	
Date/Pu	blication 2016-06-29 02:33:30	
Reposito	ory CRAN	
LazyLo	ad yes	
License	GPL-2	
_	tion Estimate large covariance matrices in approximate factor odels by thresholding principal orthogonal complements.	
Maintai	ner Martina Mincheva <m.z.mincheva@gmail.com></m.z.mincheva@gmail.com>	
Author	Jianqing Fan, Yuan Liao, Martina Mincheva	
Date 20	016-06-26	
Version	2.0	
Title Pr	incipal Orthogonal ComplEment Thresholding (POET) Method	
Type Pa	ackage	

Description

Estimates large covariance matrices in approximate factor models by thresholding principal orthogonal complements.

POET 2

Usage

```
POET(Y, K, C, thres, matrix)
```

Arguments

Κ

y p by n matrix of raw data, where p is the dimensionality, n is the sample size. It is recommended that Y is de-meaned, i.e., each row has zero mean.

number of factors. K is pre-determined by the users. Default value is set at the average value obtained from the Hallin&Liska and Bai&Ng methods. Suggestions on choosing K:

A simple way of determining K is to count the number of very spiked (much larger than others) eigenvalues of the p by p sample covariance matrix of Y.

A formal data-driven way of determining K is described in Bai and Ng (2002): "Determining the number of factors in approximate factor models", Econometrica, 70, 191-221. This procedure requires a one-dimensional optimization.

POET is very robust to over-estimating K. But under-estimating K can result to VERY BAD performance. Therefore we strongly recommend choosing a relatively large K (normally less than 8) to avoid missing any important common factor.

K=0 corresponds to threshoding the sample covariance directly.

the positive constant for thresholding, user-specified. Default value is set at C=0.5 Our experience shows that C=0.5 performs quite well for soft thresholding

choice of thresholding. Users can choose from three thresholding methods:

'soft': soft thresholding 'hard' hard thresholding 'scad': scad thresholding

'alasso': adaptive lasso thresholding Default value is set at thres='soft'.

Details are found in Rothman et al. (2009): "Generalized thresholding of large covariance matrices." JASA, 104, 177-186

the option of thresholding either correlation or covairance matrix. Users can choose from:

'cor': threshold the error correlation matrix then transform back to covariance

matrix 'yad': threshold the error coverience matrix directly

'vad': threshold the error covariance matrix directly.

Default value is set at matrix='cor'.

Details

This function is for POET, proposed by Fan, Liao and Mincheva (2012) "Large Covariance Estimation by Thresholding Principal Orthogonal Complements", manuscript of Princeton University

Model: Y_t=Bf_t+u_t, where B, f_t and u_t represent factor loading matrix, common factors and idiosyncratic error respectively. Only Y_t is observable. t=1,...,n. Dimension of Y_t is p. The goal is to estimate the covariance matrices of Y_t and u_t.

С

thres

matrix

POETCmin 3

Note: (1) POET is optimization-free, so no initial value, tolerant, or maximum iterations need to be specified as inputs.

- (2) We can apply the adaptive thresholding (Cai and Liu 2011, JASA) on either the correlation matrix or the covariance matrix, specified by the option 'matrix'.
- (3) If no factor structure is assumed, i.e., no common factors exist and var(Y_t) itself is sparse, set K=0.

Value

SigmaY: estimated p by p covariance matrix of y_t
SigmaU: estimated p by p covariance matrix of u_t

factors: estimated unobservable factors in a K by T matrix form

loadings: estimated factor loadings in a p by K matrix form

Author(s)

Jianqing Fan, Yuan Liao, Martina Mincheva

References

Fan, Liao and Mincheva (2012) "Large Covariance Estimation in Approximate Factor Models by Thresholding Principal Orthogonal Complements", manuscript of Princeton University, arXiv: 1201.0175

Examples

```
p=100
n=100
Y<-array(rnorm(p*n),dim=c(p,n))
Sy<-POET(Y,3,0.5,'soft','vad')$SigmaY
Su<-POET(Y,3,0.5,'soft','vad')$SigmaU
F<-POET(Y,3,0.5,'soft','vad')$factors
B<-POET(Y,3,0.5,'soft','vad')$loadings</pre>
```

POETCmin

Cmin - Minimum threshold constant

Description

This function is for determining the minimum constant in the threshold that guarantees the positive definiteness of the POET estimator.

Usage

```
POETCmin(Y, K, thres, matrix)
```

4 POETCmin

Arguments

Υ

p by n matrix of raw data, where p is the dimensionality, n is the sample size. It is recommended that Y is de-meaned, i.e., each row has zero mean.

Κ

number of factors. K is pre-determined by the users. Suggestions on choosing κ

- (1) A simple way of determining K is to count the number of very spiked (much larger than others) eigenvalues of the p by p sample covariance matrix of Y.
- (2) A formal data-driven way of determining K is described in Bai and Ng (2002): "Determining the number of factors in approximate factor models", Econometrica, 70, 191-221. This procedure requires a one-dimensional optimization.
- (3) POET is very robust to over-estimating K. But under-estimating K can result to VERY BAD performance. Therefore we strongly recommend choosing a relatively large K (normally less than 8) to avoid missing any important common factor.
- (4) K=0 corresponds to threshoding the sample covariance directly.

thres

choice of thresholding. Users can choose from three thresholding methods:

'soft': soft thresholding 'hard': hard thresholding 'scad': scad thresholding

'alasso': adaptive lasso thresholding

Details are found in Rothman et al. (2009): "Generalized thresholding of large

covariance matrices." JASA, 104, 177-186

matrix

the option of thresholding either correlation or covairance matrix. Users can

choose from:

'cor': threshold the error correlation matrix then transform back to covariance

matrix

'vad': threshold the error covariance matrix directly.

Details

Model: Y_t=Bf_t+u_t, where B, f_t and u_t represent factor loading matrix, common factors and idiosyncratic error respectively. Only Y_t is observable. t=1,...,n. Dimension of Y_t is p. The goal is to estimate the covariance matrices of Y_t and u_t.

Note: (1) POET is optimization-free, so no initial value, tolerant, or maximum iterations need to be specified as inputs.

- (2) We can apply the adaptive thresholding (Cai and Liu 2011, JASA) on either the correlation matrix or the covariance matrix, specified by the option 'matrix'.
- (3) If no factor structure is assumed, i.e., no common factors exist and var(Y_t) itself is sparse, set K=0.

Value

Outputs:

SigmaY: estimated p by p covariance matrix of y_t SigmaU: estimated p by p covariance matrix of u_t POETKhat 5

Author(s)

Jianqing Fan, Yuan Liao, Martina Mincheva

References

Fan, Liao and Mincheva (2012) "Large Covariance Estimation in Approximate Factor Models by Thresholding Principal Orthogonal Complements", manuscript of Princeton University, arXiv: 1201.0175

Examples

```
p=100
n=50
Y<-array(rnorm(p*n),dim=c(p,n))
C<-POETCmin(Y,3,'soft','vad')</pre>
```

P0ETKhat

Khat - number of factors in approximate factor model

Description

This function is for calculating the optimal number of factors in an approximate factor model.

Usage

POETKhat(Y)

Arguments

Υ

p by n matrix of raw data, where p is the dimensionality, n is the sample size. It is recommended that Y is de-meaned, i.e., each row has zero mean.

Details

This method was proposed by Bai & Ng (2002) and Hallin & Liska (2007). They propose two penalty functions and in turn minimize the corresponding information criteria. Notice that this method may underestimate K. POET is very robust to over-estimating K. But under-estimating K can result to VERY BAD performance. Therefore we strongly recommend choosing a relatively large K (normally less than 8) to avoid missing any important common factor.

Value

K1HL estimated number of factors based on the first infomation criterion using Hallin

& Liska method

K2HL estimated number of factors based on the second information criterion using

Hallin & Liska method

6 POETKhat

K1BN estimated number of factors based on the first infomation criterion using Bai &

Ng method

K2BN estimated number of factors based on the second information criterion using Bai

& Ng method

Author(s)

Jianqing Fan, Yuan Liao, Martina Mincheva

References

Bai,Ng,2002.Determining the number of factors in approximate factor models. Econometrica 70,191-221.

Hallin,Liska,2007.Determining the number of factors in the general dynamic factor model.JASA 102,603-617.

Alessi, Barigozzi, Capasso, 2010. Improved penalization for determining the number of factors in approximate factor models. Statistics and Probability Letters 80, 1806-1813.

Examples

```
p=100
n=100
Y<-array(rnorm(p*n),dim=c(p,n))
K<-POETKhat(Y)</pre>
```

Index

POET, 1
POETCmin, 3
POETKhat, 5