
Package ‘Qindex’
October 17, 2023

Type Package

Title Continuous and Dichotomized Index Predictors Based on
Distribution Quantiles

Version 0.1.5

Date 2023-10-17

Author Tingting Zhan [aut, cre, cph] (<https://orcid.org/0000-0001-9971-4844>),
Misung Yi [aut, cph] (<https://orcid.org/0000-0002-4007-5408>),
Inna Chervoneva [aut, cph] (<https://orcid.org/0000-0002-9104-4505>)

Maintainer Tingting Zhan <tingtingzhan@gmail.com>

Description Select optimal functional regression or dichotomized quantile
predictors for survival/logistic/numeric outcome and perform
optimistic bias correction for any optimally dichotomized numeric
predictor(s), as in Yi, et. al. (2023)
<doi:10.1016/j.labinv.2023.100158>.

LazyData true

LazyDataCompression xz

RoxygenNote 7.2.3

Encoding UTF-8

License GPL-2

Depends R (>= 4.2),

Language en-US

Imports grDevices, matrixStats, methods, mgcv, pracma, rpart, stats,
survival

Suggests knitr, boot

NeedsCompilation no

Repository CRAN

Date/Publication 2023-10-17 19:20:02 UTC

1

https://orcid.org/0000-0001-9971-4844
https://orcid.org/0000-0002-4007-5408
https://orcid.org/0000-0002-9104-4505
https://doi.org/10.1016/j.labinv.2023.100158

2 Qindex-package

R topics documented:

Qindex-package . 2
BBC_dichotom . 3
celldata . 6
clusterQp . 7
FRindex . 8
nlFRindex . 12
optimSplit_dichotom . 15
rpartD . 18
rSplit . 20

Index 22

Qindex-package Continuous and Dichotomized Index Predictors Based on Distribution
Quantiles

Description

Primary functions in this package are

optimSplit_dichotom() optimal dichotomizing predictor(s) selection via dichotomizing split sam-
ple Still need? Select optimal functional regression or dichotomized quantile predictors
for survival/logistic/numeric outcome

BBC_dichotom() Bootstrap-based optimism correction for dichotomizing selected predictor(s) Still
need? perform optimism correction for any optimal dichotomizing predictor(s)

clusterQp() calculate user-selected sample quantiles in each cluster of observations.

FRindex() Functional regression index as a predictor in the functional regression model

References

Selection of optimal quantile protein biomarkers based on cell-level immunohistochemistry data.
Misung Yi, Tingting Zhan , Amy P. Peck, Jeffrey A. Hooke, Albert J. Kovatich, Craig D. Shriver,
Hai Hu, Yunguang Sun, Hallgeir Rui and Inna Chervoneva. Under revision

Quantile index biomarkers based on single-cell expression data. Misung Yi, Tingting Zhan, Amy P.
Peck, Jeffrey A. Hooke, Albert J. Kovatich, Craig D. Shriver, Hai Hu, Yunguang Sun, Hallgeir Rui
and Inna Chervoneva. Laboratory Investigation, 2023. doi:10.1016/j.labinv.2023.100158

https://doi.org/10.1016/j.labinv.2023.100158

BBC_dichotom 3

BBC_dichotom Bootstrap-based Optimism Correction for Dichotomization

Description

Functions explained in this documentation are,

BBC_dichotom() to obtain a multivariable regression model with bootstrap-based optimism cor-
rection on the dichotomized predictors.

optimism_dichotom() a helper function to compute the bootstrap-based optimism of the dichotomized
predictors.

coef_dichotom() a helper function to obtain the estimated multivariable regression coefficients
of the dichotomized predictors.

Usage

BBC_dichotom(formula, dichotom, data, ...)

optimism_dichotom(formula, X, data, R = 100L, ...)

coef_dichotom(formula, dX, data)

Arguments

formula formula, left-hand-side being the response y and right-hand-side being the pre-
dictors in addition to the predictors to be dichotomized. If there is no additional
predictor, use y ~ 1

dichotom one-sided formula of the set of predictors to be dichotomized. These predictors
can be stored in data as one or more numeric columns and/or one matrix column

data data.frame, containing the response y and predictors in formula, as well as the
predictors to be dichotomized

... additional parameters, currently not in use

X (for helper function optimism_dichotom()) numeric matrix of k columns, a set
of k numeric predictors

R positive integer scalar, number of bootstrap replicates R, default 100L

dX (for helper function coef_dichotom()) logical matrix of k columns, a set of k
dichotomized predictors

Details

Function BBC_dichotom() obtains a multivariable regression model with bootstrap-based optimism
correction on the dichotomized predictors. Specifically,

4 BBC_dichotom

1. Dichotomize the k predictors in the entire data (using function m_rpartD()). Fit a regression
model to the entire data with the k dichotomized predictors as well as the additional predictors,
if any (using helper function coef_dichotom()). The estimated regression model is referred
to as the apparent performance.

2. Obtain the bootstrap-based optimism based on R copies of bootstrap samples, using opti-
mism_dichotom. Calculate the median of bootstrap-based optimism, specific to each of the
dichotomized predictors. In future, we may expand the options to include the use of trimmed-
mean mean.default(, trim), etc. For now, let’s refer to the median optimism as the optimism-
correction of the k dichotomized predictors.

Subtract the optimism-correction (in Step 2) from the apparent performance estimates (in Step 1),
only for the k dichotomized predictors. The apparent performance estimates for the additional pre-
dictors, if any, are not modified. The variance-covariance (vcov) estimates of the apparent perfor-
mance is not modified, for now. None of the other regression model diagnostics, such as residuals,
logLikelihood, etc., are modified neither, for now. The coefficient-only, partially-modified regres-
sion model is referred to as the optimism-corrected performance.

Value

Function BBC_dichotom returns a coxph, glm or lm regression model, with attributes,

attr(,’optimism’) the returned object from optimism_dichotom

attr(,’apparent_cutoff’) a double vector, cutoff thresholds for the k predictors in the apparent
model

Details of Helper Function optimism_dichotom()

Function optimism_dichotom computes the bootstrap-based optimism of the dichotomized predic-
tors. First, R bootstrap samples are generated, for which the end-user may specify a Random seed,
if needed. Then,

1. From each of the R bootstrap samples, obtain the dichotomizing branches for the k predictors
to be dichotomized, using function m_rpartD()

2. Dichotomize the k predictors in each bootstrap sample using the respective dichotomizing
branches from Step 1. The regression coefficients estimate for the k dichotomized predic-
tors (using helper function coef_dichotom()) is referred to as the bootstrap performance
estimate.

3. Dichotomize the k predictors in the entire data using each of the bootstrap dichotomizing
branches from Step 1. The regression coefficients estimate for the k dichotomized predictors
(using helper function coef_dichotom()) is referred to as the test performance estimate.

The difference between the bootstrap and test performance estimates, based on each of the R boot-
strap samples, are referred to as the bootstrap-based optimism or optimistic bias.

Details of Helper Function coef_dichotom()

Function coef_dichotom obtains the estimated multivariable regression coefficients of the dichotomized
predictors. A Cox proportional hazards (coxph) regression for Surv response, a logistic (glm) re-
gression for logical response, or a linear (lm) regression for gaussian response is performed with

BBC_dichotom 5

• the dichotomous logical predictors, given as the columns of dX, and

• the additional predictors specified in formula

When dX has duplicated columns, the regression model is fitted using the unique columns of dX and
the additional predictors in formula. The returned coefficient estimates repeat the corresponding
estimates of the unique columns of dX.

Returns of Helper Functions

Helper function optimism_dichotom() returns an R × k double matrix of bootstrap-based opti-
mism, with attributes

attr(,’cutoff’) an R × k double matrix, the R copies of bootstrap cutoff thresholds for the k
predictors. See attribute 'cutoff' of function m_rpartD()

Helper function coef_dichotom() returns a double vector of the coefficients of the dichotomized
predictors, with attributes

attr(,’model’) the coxph, glm or lm regression model

References on Helper Function optimism_dichotom()

Ewout W. Steyerberg (2009) Clinical Prediction Models. doi:10.1007/9780387772448

Frank E. Harrell Jr., Kerry L. Lee, Daniel B. Mark. (1996) Multivariable prognostic models: issues
in developing models, evaluating assumptions and adequacy, and measuring and reducing errors.
doi:10.1002/(SICI)10970258(19960229)15:4<361::AIDSIM168>3.0.CO;24

Examples

library(survival)
data(flchain, package = 'survival') # see more details from ?survival::flchain
head(flchain2 <- within.data.frame(flchain, expr = {

mgus = as.logical(mgus)
}))
dim(flchain3 <- subset(flchain2, futime > 0)) # required by ?rpart::rpart
dim(flchain_Circulatory <- subset(flchain3, chapter == 'Circulatory'))

m1 = BBC_dichotom(Surv(futime, death) ~ age + sex + mgus,
data = flchain_Circulatory, dichotom = ~ kappa + lambda)

summary(m1)
attr(attr(m1, 'optimism'), 'cutoff')
attr(m1, 'apparent_cutoff')

https://doi.org/10.1007/978-0-387-77244-8
https://doi.org/10.1002/%28SICI%291097-0258%2819960229%2915%3A4%3C361%3A%3AAID-SIM168%3E3.0.CO%3B2-4

6 celldata

celldata Ki67 Data

Description

Ki67 cell data containing 622 patients

Usage

Ki67

Format

PATIENT_ID factor, unique patient identifier

tissueID factor, TMA core identifier

RECURRENCE integer, recurrence indicator, 1 = Recurred, 0 = not Recurred

RECFREESURV_MO integer, recurrence-free survival time in months

Marker double, cell signal intensity of the protein immunofloerscence signal

inner_x integer, x-coordinate in the cell centroid in the TMA core

inner_y integer, y-coordinate in the cell centroid in the TMA core

AGE_AT_DX integer, age at diagnosis

Tstage integer, tumor stage

NodeSt integer, node stage, -1 = unknown, 0 = Node Negative, 1 = Node Positive

HRpos integer, indicator of hormone positive status (ER+ or PR+), 1 = positive, 0 = negative

HistologicalGrade integer, histology grade

Her2_path_qIF integer, Her2 status, 1 = positive, 0 = negative

RACE character, race, White, Black, Asian, Native Hawaiian or Other Pacific Islander, American
Indian or Alaska Native, Unknown

RadjCHEMO integer, adjuvant chemo treatment, 0 = unknown, 1 = done, 2 = NOT done

RadjRAD integer, adjuvant radiation treatment, 0 = unknown, 1 = done, 2 = NOT done

HORM_4cat integer, hormone treatment, 0 = unknown, 1 = not indicated, 2 = done, 3 = recom-
mended, but not done

MSI double, mean signal intensity (mean over all cells in the TMA core)

clusterQp 7

clusterQp Cluster-Specific Sample Quantiles

Description

Obtain vectors of sample quantiles in each cluster of observations

Usage

clusterQp(
formula,
data,
exclude,
from = 0.01,
to = 0.99,
by = 0.01,
type = 7,
...

)

Arguments

formula formula passed to aggregate.formula. To calculate the cluster-specific statistics
for response y, the user may use

y ~ id to retain only the cluster id in the returned value
y ~ id + x1 + x2 to retain the cluster id and cluster-specific variables x1 and x2

in the returned value
y ~ . to retain all (supposedly cluster-specific) variables from data in the re-

turned value

data data.frame

exclude (optional) formula or character vector, (supposedly non-cluster-specific) vari-
ables to be excluded from aggregation. To remove variables z1 and z2, the user
may use either

• exclude = c('z1', 'z2'); or
• exclude = . ~ . - z1 - z2

from, to, by double scalars, the starting, end, and increment values to specify a sequence of
probabilities p = (p1, · · · , pN)′ for the sample quantiles q = (q1, · · · , qN)′

type integer scalar, type of quantile algorithm

... additional parameters, currently not in use

Details

Function clusterQp() calculates N sample quantiles in each aggregated cluster of observations.
The aggregation is specified by parameters formula and exclude.

8 FRindex

Value

Function clusterQp() returns an aggregated data.frame. A double matrix of N columns is created
to store the sample quantiles q of each aggregated cluster. The column names of this quantile matrix
are the probabilities p.

Examples

Ki67q = clusterQp(Marker ~ ., data = Ki67, exclude = c('tissueID','inner_x','inner_y'))
tmp = clusterQp(Marker ~ ., data = Ki67, exclude = . ~ . - tissueID - inner_x - inner_y)
stopifnot(identical(Ki67q, tmp))
stopifnot(!anyDuplicated.default(Ki67q$subjID))
head(Ki67q)
sapply(Ki67q, FUN = class)

FRindex Functional Regression Indices & Weights

Description

Functions explained in this documentation are,

FRindex() to compute the functional regression indices and weights based on the functional pre-
dictors.

predict.FRindex() to compute the predicted values based on functional regression indices and
weights model.

FR_gam() a helper function to fit a functional regression model using generalized additive models
with integrated smoothness estimation (gam).

Usage

FRindex(formula, data, sign_prob = 0.5, ...)

FR_gam(
formula,
data,
xarg = as.double(colnames(X)),
family,
knot_pct = 0.4,
knot.value = ceiling(length(xarg) * knot_pct),
...

)

S3 method for class 'FRindex'
predict(
object,
newdata = object@data,

FRindex 9

newX = newdata[[object@formula[[3L]]]],
new_xarg = as.double(colnames(newX)),
...

)

Arguments

formula a two-sided formula.
Left-hand-side is the name of the response y. Supported types of responses are

double, logical and Surv.
Right-hand-side is the name of the tabulated double matrix X of functional

predictor values. Each row of X represents the tabulated values for a sub-
ject. All rows/subjects are tabulated on a common grid xarg. Each column
of X represents the tabulated values at a point on the common grid for each
subject.

data data.frame, with the response y and the tabulated functional predictor values X
specified in formula. If the functional predictor is the quantile function, then
data is preferably the returned object of clusterQp().

sign_prob double scalar between 0 and 1, probability corresponding to the selected nearest-
even quantile in xarg, which is used to define the sign of the functional regres-
sion weights. Default is .5, i.e., the nearest-even median of xarg

... for function predict.FRindex() and helper function FR_gam(), these are cur-
rently not in use. For function FRindex(), see a detailed explanation in section
Using ... in FRindex()

xarg strictly increasing double vector, the common grid on which the functional pre-
dictor values X are tabulated

family family object, the distribution and link function to be used in gam. Default fam-
ily for Surv response is mgcv::cox.ph(), for logical response is binomial(link
= 'logit'), for double response is gaussian(link = 'identity').

knot_pct positive double scalar, percentage of the number of columns of X , to be used as
knot.value. Default is 40%. If knot.value is provided by the end-user, then
knot_pct is ignored.

knot.value positive integer scalar, number of knots (i.e., parameter k in the spline smooth
function s) used in gam. Default is the ceiling of knot_pct of the column di-
mension of X

object an FRindex object for the predict method, the returned object from function
FRindex()

newdata data.frame, with at least the tabulated functional predictor values Xnew based
on object@formula

newX double matrix, functional predictor values Xnew for a set of new subjects. Each
row ofXnew represents the tabulated values for a new subject. All rows/subjects
are tabulated on a common grid new_xarg. Each column ofXnew represents the
tabulated values at a point on the common grid for each new subject.

new_xarg strictly increasing double vector, the common grid on which the functional pre-
dictor values Xnew are tabulated. The length of new_xarg does not need to be
the same as the length of object@xarg, but they must share the same range.

10 FRindex

Details

Functional regression indices & weights model:
Function FRindex() defines and calculates the functional regression indices and weights in the
following steps.

1. Fit a functional regression model to the response y using the functional predictor X , with
tabulated tabulated on a same grid xarg for all subjects, using helper function FR_gam()

2. Select one point in the tabulating grid xarg. For one-dimensional domain, we select the
nearest-even quantile of the tabulating grid xarg, corresponding to the user-specified proba-
bility sign_prob. Default sign_prob = .5 indicates the median of xarg.

3. Obtain the fitted coefficient function β̂(x), tabulated on the grid xarg, using internal helper
function gam2beta()

4. Calculate the integral of the product of the fitted coefficient function β̂(x) (from Step 3) and
the functional predictor values X , using the trapzoid rule

5. Obtain the sign of the correlation between
• the subject-specific functional predictor values, at the selected quantile of xarg (from

Step 2), and
• the subject-specific integrals from Step 4

Functional regression weights (slot @weight) are the tabulated weight function on the grid xarg.
These weights are defined as the product of sign (from Step 5) and β̂(x) (from Step 3).
Functional regression indices (slot @index) are defined as the product of sign (from Step 5) and
intg (from Step 4). Multiplication by sign is required to ensure that the resulting functional
regression indices are positively associated with the functional predictor values at the selected
quantile of xarg (from Step 2).

Predict method for functional regression indices & weights:
Function predict.FRindex() computes functional regression indices and weights based on the
tabulated functional predictors Xnew in a new sets of subjects. It’s important that the new tabula-
tion grid new_xarg must have the same range as the model tabulation grid object@xarg. Then,

1. Obtain the fitted coefficient function β̂(xnew) of the existing generalized additive model
object@gam, but tabulated on the new grid new_xarg, using internal helper function gam2beta()

2. Calculate the integral of the product of the fitted coefficient function β̂(xnew) (from Step 1)
and the new functional predictor values Xnew, using the trapzoid rule

Predicted functional regression weights are the tabulated weight function on the new grid new_xarg.
These weights are defined as the product of object@sign and β̂(xnew) (from Step 1).
Predicted functional regression indices are defined as the product of object@sign and intg (from
Step 2). Multiplication by object@sign is required to ensure that the resulting functional regres-
sion indices are positively associated with the functional predictor values at the selected quantile
of object@xarg.

Value

Functional regression indices & weights model:
Function FRindex() returns an S4 FRindex object. The slots of S4 class FRindex are described
in section Slots.

FRindex 11

Predict method for functional regression indices & weights:
Function predict.FRindex() returns a double vector, which is the predicted functional regres-
sion indices. The returned object contains an attributes

attr(,’weight’) double vector, the predicted functional regression weights

Slots

formula,data,xarg see explanations in section Arguments
gam gam object, the returned object of helper function FR_gam()

sign double scalar of either 1 or -1, see Step 5 in section Details on function FRindex()

index,weight double vectors, functional regression indices and functional regression weights,
respectively. See section Details on function FRindex()

Using ... in FRindex()

Function FRindex() passes the parameters xarg, family, knot_pct and knot.value into helper
function FR_gam() through three dots

The most important parameter among them is xarg. The default argument of the parameter xarg
comes from the column names of the matrix of tabulated functional predictor values X . This is par-
ticularly convenient when the functional predictor is the quantile function, and data is the returned
object of function clusterQp().

Both FRindex() and helper function FR_gam() accept user-provided xarg. In such case, the pro-
vided values will be checked such that

1. xarg is a numeric vector without missingness

2. length of xarg is the same as the number of columns of matrix X

3. xarg must be strictly sorted (see is.unsorted)

Otherwise, an error message will be returned.

Details of Helper Function

Helper function FR_gam() uses gam to estimate the functional coefficient by fitting functional re-
gression model.

Returns of Helper Functions

Helper function FR_gam() returns a gam object, with additional attributes

attr(,’X’) double matrix of tabulated functional predictor values X

attr(,’xarg’) double vector, see explanation of parameter xarg

References

Cui, E., Crainiceanu, C. M., & Leroux, A. (2021). Additive Functional Cox Model. Journal of
Computational and Graphical Statistics. doi:10.1080/10618600.2020.1853550

Gellar, J. E., Colantuoni, E., Needham, D. M., & Crainiceanu, C. M. (2015). Cox regression models
with functional covariates for survival data. Statistical Modelling. doi:10.1177/1471082X14565526

https://doi.org/10.1080/10618600.2020.1853550
https://doi.org/10.1177/1471082X14565526

12 nlFRindex

Examples

library(survival)

pt = unique(Ki67$PATIENT_ID)
length(pt) # 622
set.seed if necessary
train_pt = sample(pt, size = 500L)
Ki67q = clusterQp(Marker ~ ., data = Ki67, exclude = c('tissueID','inner_x','inner_y'))
train_q = subset(Ki67q, PATIENT_ID %in% train_pt)
test_q = subset(Ki67q, !(PATIENT_ID %in% train_pt))
train_q$Marker = log1p(train_q$Marker)
test_q$Marker = log1p(test_q$Marker)

FRi = FRindex(Surv(RECFREESURV_MO, RECURRENCE) ~ Marker, data = train_q)
FRi@index # functional regression index
FRi@weight # functional regression weights
head(show(FRi)) # append `FRi` to the data

(FRi_test = predict(FRi, newdata = test_q))

FRi_train = predict(FRi)
stopifnot(identical(FRi@index, c(FRi_train)),
identical(FRi@weight, attr(FRi_train, 'weight')))

set.seed if necessary
Ki67bbc_v2 = BBC_dichotom(Surv(RECFREESURV_MO, RECURRENCE) ~ NodeSt + Tstage,

data = data.frame(train_q, FRi_std = std_IQR(FRi_train)),
dichotom = ~ FRi_std)

summary(Ki67bbc_v2)

Ki67q = clusterQp(Marker ~ ., data = Ki67, exclude = c('tissueID','inner_x','inner_y'))
Ki67q$Marker = log1p(Ki67q$Marker)

library(survival)
FR_gam(Surv(RECFREESURV_MO, RECURRENCE) ~ Marker, data = Ki67q)

nlFRindex Nonlinear Functional Regression Indices

Description

Functions explained in this documentation are,

nlFRindex() to compute the non-linear functional regression indices based on the functional pre-
dictors.

predict.FRindex() to compute the predicted values based on functional regression indices model.

nlFRindex 13

Usage

nlFRindex(
formula,
data,
xarg = as.double(colnames(X)),
family,
fit = TRUE,
...

)

S3 method for class 'nlFRindex'
predict(object, newdata, ...)

Arguments

formula a two-sided formula.

Left-hand-side is the name of the response y. Supported types of responses are
double, logical and Surv.

Right-hand-side is the name of the tabulated double matrix X of functional
predictor values. Each row of X represents the tabulated values for a sub-
ject. All rows/subjects are tabulated on a common grid xarg. Each column
of X represents the tabulated values at a point on the common grid for each
subject.

data data.frame, with the response y and the tabulated functional predictor values X
specified in formula. If the functional predictor is the quantile function, then
data is preferably the returned object of clusterQp().

xarg numeric vector. The default argument comes from the column names of the ma-
trix of tabulated functional predictor values X . This is particularly convenient
when the functional predictor is the quantile function, and data is the returned
object of function clusterQp(). The user-provided xarg will be checked such
that

1. xarg is a numeric vector without missingness
2. length of xarg is the same as the number of columns of matrix X
3. xarg must be strictly sorted (see is.unsorted)

Otherwise, an error message will be returned.

family ..

fit logical scalar, see gam

... additional parameters, currently not in use

object an nlFRindex object for the predict method, the returned object from function
nlFRindex()

newdata data.frame, with at least the tabulated functional predictor values Xnew based
on object@formula

14 nlFRindex

Details

Functional regression indices & weights model:
Function nlFRindex() fits a non-linear functional regression model to the response y using the
functional predictorX , with values tabulated on a same grid xarg for all subjects (Cui et al, 2021).

Predict method for non-linear functional regression indices:
Function predict.nlFRindex() computes non-linear functional regression indices based on the
tabulated functional predictors Xnew in a new sets of subjects. It’s important that the new tabula-
tion grid must be exactly the same as the model tabulation grid object@xarg.

Value

Functional regression indices & weights model:
Function nlFRindex() returns an S4 nlFRindex object. The slots of S4 class nlFRindex are
described in section Slots.

Predict method for non-linear functional regression indices:
Function predict.nlFRindex() returns a double vector, which is the predicted non-linear func-
tional regression indices.

Slots

formula,data,xarg see explanations in section Arguments
gam gam object

p.value numeric scalar, p-value for the test of significance of the functional predictor

index double vector, functional regression indices.

References

Cui, E., Crainiceanu, C. M., & Leroux, A. (2021). Additive Functional Cox Model. Journal of
Computational and Graphical Statistics. doi:10.1080/10618600.2020.1853550

Examples

pt = unique(Ki67$PATIENT_ID)
length(pt) # 622
set.seed if necessary
train_pt = sample(pt, size = 500L)
Ki67q = clusterQp(Marker ~ ., data = Ki67, exclude = c('tissueID','inner_x','inner_y'))
train_q = subset(Ki67q, PATIENT_ID %in% train_pt)
test_q = subset(Ki67q, !(PATIENT_ID %in% train_pt))
train_q$Marker = log1p(train_q$Marker)
test_q$Marker = log1p(test_q$Marker)

using Cox model
m = nlFRindex(Surv(RECFREESURV_MO, RECURRENCE) ~ Marker, data = train_q)
m@p.value # test significance of `Marker` as a functional predictor
train_index = predict(m, newdata = train_q) # non-linear FR index of training data
stopifnot(identical(train_index, m@index))

https://doi.org/10.1080/10618600.2020.1853550

optimSplit_dichotom 15

predict(m, newdata = test_q) # non-linear FR index of test data

using logistic regression model
nlFRindex(RECURRENCE ~ Marker, data = train_q)

using Gaussian model
nlFRindex(RECFREESURV_MO ~ Marker, data = train_q)

optimSplit_dichotom Optimal Dichotomizing Predictors via Repeated Sample Splits

Description

Functions explained in this documentation are,

optimSplit_dichotom() to identify the optimal dichotomizing predictors using repeated sample
splits.

split_dichotom() a helper function to perform a univariable regression model on the test set with
a dichotomized predictor, using a dichotomizing rule determined by a recursive partitioning
of the training set.

quantile_split_dichotom() a helper function to locate a quantile of multiple split_dichotom
objects, based on the estimated univariable regression coefficient.

Usage

optimSplit_dichotom(formula, data, include, top = 1L, nsplit, ...)

split_dichotom(y, x, index, ...)

quantile_split_dichotom(y, x, indices = rSplit(y, ...), probs = 0.5, ...)

Arguments

formula formula. Left-hand-side is the name of a Surv, logical, or double response y.
Right-hand-side is the candidate numeric predictors in data, given either as
the name of a numeric matrix column (e.g., y ~ X), or as the names of several
numeric vector columns (e.g., y ~ x1 + x2 + x3)

data data.frame, containing the response and predictors in formula

include language object, inclusion criteria for the optimal dichotomizing predictors.
A suggested choice is (highX>.15 & highX<.85) to guarantee a user-desired
range of proportions in highX. See explanation of highX in helper function
split_dichotom().

top positive integer scalar, number of optimal dichotomizing predictors, default 1L

nsplit, ... additional parameters for function rSplit()

16 optimSplit_dichotom

y (for helper functions) a Surv object, a logical vector, or a double vector, the
response y

x (for helper functions) numeric vector, a single predictor x

index (for helper function split_dichotom()) logical vector, indices of training and
test set. TRUE elements indicate training subjects and FALSE elements indicate
test subjects.

indices (optional, for helper function quantile_split_dichotom()) a list of logical
vectors, the indices of multiple training-test sample splits. Default value is pro-
vided by function rSplit().

probs (for helper function quantile_split_dichotom()) double scalar, see quantile

Details

Function optimSplit_dichotom() selects the optimal dichotomizing predictors via repeated sam-
ple splits. Specifically,

1. Generate multiple training-test sample splits using function rSplit()

2. For each candidate predictor, find the median split_dichotom (using helper function quantile_split_dichotom())
of the multiple sample splits from Step 1.

3. (Optional) limit the selection in a subset of the candidate predictors. Typically, we would pre-
fer to guarantee a user-desired range of highX (see explanations on highX in section Returns
of Helper Functions). A suggested choice is (highX>.15 & highX<.85).

4. Rank the candidate predictors, from either Step 2 or Step 3, by the decreasing order of
the absolute values of the estimated univariable regression coefficients of the corresponding
split_dichotom objects.

The optimal dichotomizing predictors are the ones with the largest absolute values of the estimated
univariable regression coefficients of the corresponding split_dichotom objects.

Value

Function optimSplit_dichotom() returns a data.frame, which contains the response, and only the
optimal dichotomizing predictors out of all candidate predictors. Other variables in data, which
are not specified in formula, are retained. In addition, the dichotomized values of the optimal
dichotomizing predictors, according to their respective dichotomizing rules, are also included. The
returned value has attributes,

attr(,’id_top’) positive integer scalar or vector, the indices of the optimal dichotomizing pre-
dictors out of all candidate predictors.

attr(,’top’) a diagnostic data.frame of the median split_dichotoms of each of the optimal di-
chotomizing predictors, with columns

$cutoff the cutoff threshold, identified in the training set
$highX proportion of the dichotomizing predictors greater-than or greater-than-or-equal-to

the cutoff threshold, in the test set
$coef the estimated univariable regression coefficient of the dichotomized predictor, in the

test set

optimSplit_dichotom 17

Details on Helper Functions

Univariable regression model with a dichotomized predictor:
Helper function split_dichotom() performs a univariable regression model on the test set with
a dichotomized predictor, using a dichotomizing rule determined by a recursive partitioning of
the training set. Currently the Cox proportional hazards (coxph) regression for Surv response,
logistic (glm) regression for logical response and linear (lm) regression for gaussian response are
supported. Specifically, given a training-test sample split,

1. find the dichotomizing rule of the response y given the predictor x, using function rpartD(),
in the training set

2. dichotomize the predictor x using the rule identified in Step 1, in the test set.
3. run a univariable regression model on the response y on the dichotomized predictor from

Step 2, in the test set.

Quantile of split_dichotom objects:
Helper function quantile_split_dichotom() finds the quantile of the univariable regression
coefficient (i.e., effect size) of a dichotomized predictor, based on multiple given training-test
sample splits. Specifically,

1. for each training-test sample split, fit the univariable regression model based on the di-
chotomized predictor, using helper function split_dichotom()

2. finds the nearest-even (type = 3) quantile of the estimated univariable regression coefficients
obtained in Step 1, based on the user-specified probability prob

The split_dichotom object from Step 1, whose estimated univariable regression coefficient equals
to the specified quantile identified in Step 2, is referred to as the quantile of split_dichotom objects
based on the multiple given training-test sample splits.

Returns of Helper Functions

Helper function split_dichotom(), as well as helper function quantile_split_dichotom(), re-
turns a Cox proportional hazards (coxph), or a logistic (glm), or a linear (lm) regression model, with
additional attributes

attr(,’rule’) function, the dichotomizing rule based on the training set

attr(,’cutoff’) numeric scalar, the cutoff threshold based on the training set

attr(,’highX’) double scalar, proportion of numeric predictor x, in the test set, which is greater-
than or greater-than-or-equal-to the cutoff threshold attr(, 'cutoff')

attr(,’coef’) double scalar, the estimated univariable regression coefficient of the dichotomized
predictor in the test set

Examples

library(survival)
data(pbc, package = 'survival') # see more details from ?survival::pbc
head(pbc2 <- within.data.frame(subset(pbc, status != 1L), expr = {

death = (status == 2L)
trt = structure(trt, levels = c('D-penicillmain', 'placebo'), class = 'factor')
trt = relevel(trt, ref = 'placebo')

18 rpartD

}))

set.seed if needed
m1 = optimSplit_dichotom(
Surv(time, death) ~ bili + chol + albumin + copper + alk.phos + ast + trig + platelet + protime,
data = pbc2, nsplit = 20L, include = (highX > .15 & highX < .85), top = 2L)

head(m1, n = 10L)
attr(m1, 'top')

rpartD Dichotomize via Recursive Partitioning

Description

Dichotomize one or more predictors of a Surv, a logical, or a double response, using recursive
partitioning and regression tree rpart.

Usage

rpartD(
y,
x,
check_degeneracy = TRUE,
cp = .Machine$double.eps,
maxdepth = 2L,
...

)

m_rpartD(y, X, check_degeneracy = TRUE, ...)

Arguments

y a Surv object, a logical vector, or a double vector, the response y

x numeric vector, one predictor x
check_degeneracy

logical scalar, whether to allow the dichotomized value to be all-FALSE or all-
TRUE (i.e., degenerate) for any one of the predictors. Default TRUE to produce a
warning message for degeneracy.

cp double scalar, complexity parameter, see rpart.control. Default .Machine$double.eps,
so that a split is enforced no matter how small improvement in overall R2 is

maxdepth positive integer scalar, maximum depth of any node, see rpart.control. Default
2L, because only the first node is needed

... additional parameters of rpart and/or rpart.control

X numeric matrix, a set of predictors. Each column of X is one predictor.

rpartD 19

Details

Dichotomize Single Predictor:
Function rpartD() dichotomizes one predictor in the following steps,

1. Recursive partitioning and regression tree rpart analysis is performed for the response y and
the predictor x.

2. The labels.rpart of the first node of the rpart tree is considered as the dichotomizing rule of the
double predictor x. The term dichotomizing rule indicates the combination of an inequality
sign (>, >=, < and <=) and a double cutoff threshold a

3. The dichotomizing rule from Step 2 is further processed, such that
• < a is regarded as ≥ a

• ≤ a is regarded as > a

• > a and ≥ a are regarded as is.
This step is necessary for a narrative of greater than or greater than or equal to the threshold
a.

4. A warning message is produced, if the dichotomizing rule, applied to a new double predictor
newx, creates an all-TRUE or all-FALSE result. We do not make the algorithm stop, as most re-
gression models in R are capable of handling an all-TRUE or all-FALSE predictor, by returning
a NA_real_ regression coefficient estimate.

Dichotomize Multiple Predictors:
Function m_rpartD() dichotomizes each predictor X[,i] based on the response y using function
rpartD(). Applying the multiple dichotomizing rules to a new set of predictors newX,

• A warning message is produced, if at least one of the dichotomized predictors is all-TRUE or
all-FALSE.

• We do not check if more than one of the dichotomized predictors are identical to each other.
We take care of this situation in helper function coef_dichotom()

Value

Dichotomize Single Predictor:
Function rpartD() returns a function, with a double vector parameter newx. The returned value
of rpartD(y,x)(newx) is a logical vector with attributes

attr(,’cutoff’) double scalar, the cutoff value for newx

Dichotomize Multiple Predictors:
Function m_rpartD() returns a function, with a double matrix parameter newX. The argument for
newX must have the same number of columns and the same column names as the input matrix X .
The returned value of m_rpartD(y,X)(newX) is a logical matrix with attributes

attr(,’cutoff’) named double vector, the cutoff values for each predictor in newX

Note

In future integer and factor predictors will be supported.

20 rSplit

Examples

Dichotomize Single Predictor
data(cu.summary, package = 'rpart') # see more details from ?rpart::cu.summary
with(cu.summary, rpartD(y = Price, x = Mileage, check_degeneracy = FALSE))
(foo = with(cu.summary, rpartD(y = Price, x = Mileage)))
foo(rnorm(10, mean = 24.5))

Dichotomize Multiple Predictors
library(survival)
data(stagec, package = 'rpart') # see more details from ?rpart::stagec
nrow(stagec) # 146
(foo = with(stagec[1:100,], m_rpartD(y = Surv(pgtime, pgstat), X = cbind(age, g2, gleason))))
foo(as.matrix(stagec[-(1:100), c('age', 'g2', 'gleason')]))

rSplit Random Split Sampling with Stratification

Description

Random split sampling, stratified based on the type of the response.

Usage

rSplit(y, nsplit, stratified = TRUE, trainFrac = 0.8, ...)

Arguments

y a double vector, a logical vector, a factor, or a Surv object, response y

nsplit positive integer scalar, replicates of random splits to be performed

stratified logical scalar, whether stratification based on response y needs to be imple-
mented, default TRUE

trainFrac double scalar between 0 and 1, fraction of the training set, default .8

... additional parameters, currently not in use

Details

Function rSplit() performs random split sampling, with or without stratification. Specifically,

• If stratified = FALSE, or if we have a double response y, then split the sample into a training
and a test set by ratio trainFrac, without stratification.

• Otherwise, split a Surv response y, stratified by its censoring status. Specifically, split subjects
with observed event into a training and a test set with training set fraction trainFrac, and
split the censored subjects into a training and a test set with training set fraction trainFrac.
Then combine the training sets from subjects with observed events and censored subjects, and
combine the test sets from subjects with observed events and censored subjects.

rSplit 21

• Otherwise, split a logical response y, stratified by itself. Specifically, split the subjects with
TRUE response into a training and a test set with training set fraction trainFrac, and split the
subjects with FALSE response into a training and a test set with training set fraction trainFrac.
Then combine the training sets, and the test sets, in a similar fashion as described above.

• Otherwise, split a factor response y, stratified by its levels. Specifically, split the subjects in
each level of y into a training and a test set by ratio trainFrac. Then combine the training
sets, and the test sets, from all levels of y.

Value

Function rSplit() returns a length-nsplit list of logical vectors. In each logical vector, the TRUE
elements indicate training subjects and the FALSE elements indicate test subjects.

Note

caTools::sample.split() is not what we need.

See Also

split

Examples

rSplit(y = rep(c(TRUE, FALSE), times = c(20, 30)), nsplit = 3L)

Index

∗ datasets
celldata, 6

∗ package
Qindex-package, 2

<, 19
<=, 19
>, 19
>=, 19

abs, 16
aggregate, 7, 8
aggregate.formula, 7
attributes, 4, 5, 11, 16, 17, 19

BBC_dichotom, 3, 4
BBC_dichotom(), 2, 3

ceiling, 9
celldata, 6
character, 6, 7
clusterQp, 7
clusterQp(), 2, 7–9, 11, 13
coef_dichotom, 4
coef_dichotom (BBC_dichotom), 3
coef_dichotom(), 3–5, 19
cor, 10
coxph, 4, 5, 17

data.frame, 3, 7–9, 13, 15, 16
double, 4–9, 11, 13–20

factor, 6, 19–21
family, 9
formula, 3, 7, 9, 13, 15
FR_gam (FRindex), 8
FR_gam(), 8–11
FRindex, 8, 9, 10
FRindex(), 2, 8–11
FRindex-class (FRindex), 8
function, 17, 19

gam, 8, 9, 11, 13, 14
gam2beta(), 10
gaussian, 4, 17
glm, 4, 5, 17

identical, 19
integer, 3, 6, 7, 9, 15, 16, 18–20
is.unsorted, 11, 13

Ki67 (celldata), 6

labels.rpart, 19
language, 15
length, 11, 13
levels, 21
list, 16, 21
lm, 4, 5, 17
logical, 3–5, 9, 13, 15–21
logLik, 4

m_rpartD (rpartD), 18
m_rpartD(), 4, 5, 19
matrix, 3, 5, 8, 9, 11, 13, 15, 18, 19
mean.default, 4
median, 4, 9, 10

name, 9, 13, 15
nlFRindex, 12, 13, 14
nlFRindex(), 12–14
nlFRindex-class (nlFRindex), 12
numeric, 3, 11, 13–18

optimism_dichotom, 4
optimism_dichotom (BBC_dichotom), 3
optimism_dichotom(), 3, 5
optimSplit_dichotom, 15
optimSplit_dichotom(), 2, 16

predict, 9, 13
predict.FRindex (FRindex), 8
predict.FRindex(), 8–12

22

INDEX 23

predict.nlFRindex (nlFRindex), 12
predict.nlFRindex(), 14

Qindex-package, 2
quantile, 7–11, 13, 16, 17
quantile_split_dichotom

(optimSplit_dichotom), 15
quantile_split_dichotom(), 16, 17

Random, 4
range, 10
replicate, 20
resid, 4
rpart, 18, 19
rpart.control, 18
rpartD, 18
rpartD(), 17, 19
rSplit, 20
rSplit(), 15, 16, 20, 21

s, 9
S4, 10, 14
seq, 7
sign, 9, 10
split, 21
split_dichotom, 15–17
split_dichotom (optimSplit_dichotom), 15
split_dichotom(), 15–17
stop, 19
Surv, 4, 9, 13, 15–18, 20

trapz, 10

vcov, 4
vector, 4, 5, 7, 9, 11, 13–16, 18–21

warning, 18, 19

	Qindex-package
	BBC_dichotom
	celldata
	clusterQp
	FRindex
	nlFRindex
	optimSplit_dichotom
	rpartD
	rSplit
	Index

