ReMFPCA: Regularized Multivariate Functional Principal Component Analysis

Methods and tools for implementing regularized multivariate functional principal component analysis ('ReMFPCA') for multivariate functional data whose variables might be observed over different dimensional domains. 'ReMFPCA' is an object-oriented interface leveraging the extensibility and scalability of R6. It employs a parameter vector to control the smoothness of each functional variable. By incorporating smoothness constraints as penalty terms within a regularized optimization framework, 'ReMFPCA' generates smooth multivariate functional principal components, offering a concise and interpretable representation of the data. For detailed information on the methods and techniques used in 'ReMFPCA', please refer to Haghbin et al. (2023) <doi:10.48550/arXiv.2306.13980>.

Version: 1.0.0
Depends: R (≥ 4.0), R6
Imports: fda, expm, Matrix
Published: 2023-07-01
DOI: 10.32614/CRAN.package.ReMFPCA
Author: Hossein Haghbin ORCID iD [aut, cre], Yue Zhao ORCID iD [aut], Mehdi Maadooliat ORCID iD [aut]
Maintainer: Hossein Haghbin <haghbin at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: README
CRAN checks: ReMFPCA results


Reference manual: ReMFPCA.pdf


Package source: ReMFPCA_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): ReMFPCA_1.0.0.tgz, r-oldrel (arm64): ReMFPCA_1.0.0.tgz, r-release (x86_64): ReMFPCA_1.0.0.tgz, r-oldrel (x86_64): ReMFPCA_1.0.0.tgz


Please use the canonical form to link to this page.