Package 'SOAs'

August 10, 2023
Title Creation of Stratum Orthogonal Arrays
Version 1.4
Description Creates stratum orthogonal arrays (also known as strong orthogonal arrays). These are arrays with more levels per column than the typical orthogonal array, and whose low order projections behave like orthogonal arrays, when collapsing levels to coarser strata. Details are described in Groemping (2022) "'A unifying implementation of stratum (aka strong) orthogonal arrays" http://www1.bht-berlin.de/FB_II/reports/Report-2022-002.pdf.

Depends R ($>=$ 3.6.0), DoE.base ($>=1.2$)
Imports stats, combinat, FrF2, igraph, lhs (>=1.1.3), conf.design, sfsmisc, partitions

License GPL (>=2)
Encoding UTF-8
URL https://github.com/bertcarnell/SOAs
BugReports https://github.com/bertcarnell/SOAs/issues
RoxygenNote 7.2.3
Suggests testhat (>=3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Ulrike Groemping [aut, cre], Rob Carnell [ctb]

Maintainer Ulrike Groemping ulrike.groemping@bht-berlin.de
Repository CRAN
Date/Publication 2023-08-10 17:50:02 UTC

R topics documented:

SOAs-package 2
contr.FFbHelmert 4
contr.Power 5
contr.TianXu 6
createSaturated 7
guide_SOAs 8
guide_SOAs_from_OA 9
mbound_LiuLiu 11
MDLEs 12
ocheck 13
OSOAs 14
OSOAs hadamard 16
OSOAs_LiuLiu 18
OSOAs_regular 21
phi_optimize 23
phi_p 24
print.SOA 25
SOAs 26
SOAs2plus_regular 28
SOAs_8level 30
Spattern 33
Index 37
SOAs-package Creation of Stratum (aka Strong) Orthogonal Arrays

Description

Creates stratum orthogonal arrays (also known as strong orthogonal arrays).

Details

This package constructs arrays in $s^{e l}$ levels from orthogonal arrays in s levels. These are all based on equations of the type

$$
D=s^{e l-1} A_{1}+\ldots+s A_{e l-1}+A_{e l}
$$

or for s^{2} levels,

$$
D=s A+B
$$

and for s^{3} levels,

$$
D=s^{2} A+s B+C
$$

The constructions differ in how they obtain the ingredient matrices, and what properties can be guaranteed for the resulting D . Where a construction function guarantees orthogonal columns for all matrices D it produces, its name starts with a OSOA, otherwise with SOA.

If optimization is requested (default TRUE), space filling properties of D are improved using a level permutation algorithm by Weng (2014). This algorithm is applied for improving the phi_p criterion, which is often a reasonable surrogate for increasing the minimum distance.

Groemping (2023a) describes the constructions by He and Tang (2013, function SOAs), Liu and Liu (2015, function OSOAs_LiuLiu), He, Cheng and Tang (2018, function SOAs2plus_regular), Zhou and Tang (2019), Shi and Tang (2020, function SOAs_8level) and Li, Liu and Yang (2021)
in unified notation. The constructions by Zhou and Tang (2019) and Li et al. (2021) are very close to each other and are both implemented in the three functions OSOAs, OSOAs_hadamard and OSOAs_regular.
Within the package, available SOA constructions for specific situations can be queried using the guide functions guide_SOAs and guide_SOAs_from_OA.

Besides the construction functions, properties of the resulting array D can be checked using the aforementioned function phi_p as well as check functions ocheck, ocheck3 for orthogonality and soacheck2D, soacheck3D for (O)SOA stratification properties, and Spattern for the space-filling pattern proposed by Tian and Xu (2022); the implementation of the latter will presumably become more important than the 2D and 3D check functions eventually.
There is one further construction, maximin distance level expansion (XiaoXuMDLE, MDLEs), that does not yield stratum (aka strong) orthogonal arrays and is available for comparison only (Xiao and Xu 2018).

Author(s)

Author: Ulrike Groemping, BHT Berlin. Contributor: Rob Carnell.

References

Groemping, U. (2022). Implementation of the stratification pattern by Tian and Xu via power coding. Report 2022/03, Reports in Mathematics, Physics and Chemistry, Berliner Hochschule fuer Technik. http://www1.bht-berlin.de/FB_II/reports/Report-2022-003.pdf

Groemping, U. (2023a). A unifying implementation of stratum (aka strong) orthogonal arrays. Computational Statistics and Data Analysis 183, 1-28. doi: 10.1016/j.csda.2023.107739
Groemping, U. (2023b). Implementating the stratification pattern for space-filling, with dimension by weight tables. Report 2023/01, Reports in Mathematics, Physics and Chemistry, Berliner Hochschule fuer Technik. http://www1.bht-berlin.de/FB_II/reports/Report-2023-001. pdf
He, Y., Cheng, C.S. and Tang, B. (2018). Strong orthogonal arrays of strength two plus. The Annals of Statistics 46, 457-468. doi: 10.1214/17AOS1555
He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated Latin hypercubes for computer experiments. Biometrika 100, 254-260. doi: 10.1093/biomet/ass065
Li, W., Liu, M.-Q. and Yang, J.-F. (2021). Construction of column-orthogonal strong orthogonal arrays. Statistical Papers doi: 10.1007/s0036202101249w.
Liu, H. and Liu, M.-Q. (2015). Column-orthogonal strong orthogonal arrays and sliced strong orthogonal arrays. Statistica Sinica 25, 1713-1734. doi: 10.5705/ss.2014.106
Shi, L. and Tang, B. (2020). Construction results for strong orthogonal arrays of strength three. Bernoulli 26, 418-431. doi: 10.3150/19BEJ1130

Tian, Y. and Xu, H. (2022). A minimum aberration-type criterion for selecting space-filling designs. Biometrika 109, 489-501. doi: 10.1093/biomet/asab021
Weng, J. (2014). Maximin Strong Orthognal Arrays. Master's thesis at Simon Fraser University under supervision of Boxin Tang and Jiguo Cao. https://summit.sfu.ca/item/14433
Xiao, Q. and Xu, H. (2018). Construction of Maximin Distance Designs via Level Permutation and Expansion. Statistica Sinica 28, 1395-1414. doi: 10.5705/ss.202016.0423

Zhou, Y.D. and Tang, B. (2019). Column-orthogonal strong orthogonal arrays of strength two plus and three minus. Biometrika 106, 997-1004. doi: 10.1093/biomet/asz043

See Also

Useful links:

- https://github.com/bertcarnell/SOAs
- Report bugs at https://github.com/bertcarnell/SOAs/issues

$$
\text { contr.FFbHelmert } \quad \text { Full-factorial-based real-valued contrasts for } s^{\wedge} e l \text { levels }
$$

Description

Full-factorial-based real-valued contrasts for $\mathrm{s}^{\wedge} \mathrm{el}$ levels
Full-factorial-based polynomial contrasts for s^{\wedge} el levels

Usage

contr.FFbHelmert(n, s, contrasts = TRUE, slowfirst = TRUE)
contr. FFbPoly(n, s, contrasts = TRUE, slowfirst = TRUE)

Arguments

n
integer or vector; either an integer number of levels of the factor for which contrasts are created, which must be a a power of s; or a factor whose number of levels is a power of s; or a vector of levels whose number of elements is a power of s .
s positive integer, at least 2
contrasts logical; must be TRUE
slowfirst logical; default TRUE

Details

The functions implement real-valued full-factorial-based contrasts in the sense of Groemping (2023b) that can be used instead of the complex-valued contrasts from Tian and Xu (2022), as implemented in function contr. TianXu. Their main use is the calculation of the stratification pattern (also called space-filling pattern). Function Spattern uses function contr. FFbHelmert for this purpose, the internal function Spattern_Poly uses contr.FFbPoly.

Value

contr.FFbHelmert and contr.FFbPoly yield a matrix of real-valued contrasts. That matrix can be used in function model.matrix or in any statistical modeling functions.

References

Groemping (2023b) Tian and Xu (2022)

Examples

```
## the same n can yield different contrasts for different s
## Helmert variant
contr.FFbHelmert(16, 2)
round(contr.FFbHelmert(16, 4), 4)
round(contr.FFbHelmert(16, 16), 4)
## Poly variant
contr.FFbHelmert(16, 2)
round(contr.FFbHelmert(16, 4), 4)
round(contr.FFbHelmert(16, 16), 4)
```

contr. Power A contrast function based on regular factorials for number of levels a prime or prime power

Description

A contrast function based on regular factorials for number of levels a prime or prime power

Usage

contr. $\operatorname{Power}(\mathrm{n}, \mathrm{s}=2$, contrasts = TRUE)

Arguments

$\mathrm{n} \quad$ integer or vector; either an integer number of levels of the factor for which contrasts are created, which must be a a power of s; or a factor whose number of levels is a power of s; or a vector of levels whose number of elements is a power of s.
s
integer; prime or prime power
contrasts logical; must be TRUE

Details

The function is a generalization (with slowest first instead of fastest first) of function contr. FrF2 from package DoE.base. It is in this package because it needs Galois field functionality from package lhs for non-prime s. Its purpose is (was) the calculation of the stratification (or spacefilling) pattern by Tian and Xu (2022), see also Groemping (2022). The package now calculates the pattern with function contr. TianXu.

Value

contr. Power yields a matrix of contrasts. It can be used in function model.matrix or anywhere where factors with the number of levels a power of $\$ \mathbf{s} \$$ are used with contrasts. The exponent for s is determined from the number of levels.

References

Groemping (2022) Tian and Xu (2022)

Examples

```
## the same n can yield different contrasts for different s
contr.Power(16, 2)
contr.Power(16, 4)
```

contr.TianXu A complex-valued contrast function for s^{\wedge} el levels based on powers of
the s-th root of the unity

Description

A complex-valued contrast function for $\mathrm{s}^{\wedge} \mathrm{el}$ levels based on powers of the s-th root of the unity

Usage

contr. TianXu(n, s = 2, contrasts = TRUE)

Arguments

$\mathrm{n} \quad$ integer or vector; either an integer number of levels of the factor for which contrasts are created, which must be a a power of s; or a factor whose number of levels is a power of s; or a vector of levels whose number of elements is a power of s.
$\mathrm{s} \quad$ positive integer, at least 2
contrasts logical; must be TRUE

Details

The function implements the complex-valued contrasts from Tian and Xu (2022). Its sole use is the calculation of the stratification pattern (also called space-filling pattern). However, note that it is not used in function Spattern, but only in the internal function Spattern_TianXu, which yields exactly the same results as function Spattern.
The contrasts argument has been kept in order to be prepared in case the model.matrix function gains the ability to handle complex-valued contrasts.
The Tian and Xu contrasts are full-factorial-based contrasts in the sense of Groemping (2023b). Function Spattern uses a different type of full-factorial-based contrasts, the full-factorial-based Helmert contrasts provided in function contr. FFbHelmert.

Value

contr. TianXu yields a matrix of complex-valued contrasts. It can therefore NOT be used in function model.matrix or in statistical modeling functions.

References

Groemping (2023b) Tian and Xu (2022)

Examples

```
## the same n can yield different contrasts for different s
contr.TianXu(16, 2)
contr.TianXu(16, 4)
round(contr.TianXu(16, 16), 4)
```

createSaturated \quad Function to create a regular saturated strength 2 array

Description

produces an $\mathrm{OA}\left(\mathrm{s}^{\wedge} \mathrm{k},\left(\mathrm{s}^{\wedge} \mathrm{k}-1\right) /(\mathrm{s}-1), \mathrm{s}, 2\right)$ (Rao-Hamming construction)

Usage

createSaturated(s, k = 2)

Arguments

$s \quad$ the prime or prime power to use
$\mathrm{k} \quad$ integer; determines the run size: the resulting array will have $\mathrm{s}^{\wedge} \mathrm{k}$ runs

Details

For many situations, the saturated fractions produced by this function are not the best choice for direct use in experimentation, because they heavily confound main effects with interactions.
If not all columns are needed, using the last m columns may yield better results than using the first m columns.
If possible, stronger OAs from other sources can be used, e.g. from package $\mathbf{F r F} 2$ for 2-level factors or from package DoE.base for factors with more than 2 levels.

Value

createSaturated returns an $\mathrm{s}^{\wedge} \mathrm{k}$ times $\left(\mathrm{s}^{\wedge} \mathrm{k}-1\right) /(\mathrm{s}-1)$ matrix (saturated regular OA with s -level columns)

Examples

```
createSaturated(3, k=3) ## 27 x 13 array in 3 levels
```


Description

Utility function for inspecting available SOAs for which the user need not provide an OA

Usage

guide_SOAs(s = 2, el = 3, m = NULL, $\mathrm{n}=\mathrm{NULL}, \ldots$)

Arguments

s required (default: 2); prime or prime power on which the SOA is based
el required (default: 3); the power to which s is to be taken, i.e. the SOA will have columns with $\mathrm{s}^{\wedge} \mathrm{el}$ levels
m the number of columns needed (optional)
$\mathrm{n} \quad$ the maximum number of runs that are acceptable (optional); should be a multiple of $s^{\wedge} e l$; must not be smaller than $m+1$, if m is specified
... currently unused

Details

The function provides the possible creation variants of an SOA that has m columns in $s^{\wedge} e l$ levels in up to n runs. It is permitted to specify m OR n only; in that case the function provides constructions with the smallest n or the largest m , respectively.
If both m and n are omitted, the function returns the smallest possible (O)SOA constructions for $s^{\wedge} \mathrm{el}$ levels that can be obtained without providing an OA.

Value

The function returns a data frame, each row of which contains a possibility; if no SOAs exist, the data.frame has zero rows. There is example code for constructing the SOA. Code details must be adjusted by the user (see the documentation of the respective functions). \#'

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Groemping (2023a)
He, Cheng and Tang (2018)
Li, Liu and Yang (2021)

Shi and Tang (2020)
Zhou and Tang (2019)

See Also

```
guide_SOAs_from_OA
```


Examples

```
## guide_SOAs
## There is a Zhou and Tang type SOA with 4-level columns in 8 runs
guide_SOAs(2, 2, n=8)
## There are no SOAs with 8-level columns in 8 runs
guide_SOAs(2, 3, n=8)
## What SOAs based on s=2 in s^3 levels with 7 columns
## can be construct without providing an OA?
guide_SOAs(2, 3, m=7)
## pick the Shi and Tang family 3 design
myST_3plus <- SOAs_8level(n=32, m=7, constr='ShiTang_alphabeta')
## Note that the design has orthogonal columns and strength 3+,
## i.e., very good balance properties.
```

 guide_SOAs_from_OA Utility function for inspecting SOAs obtainable from an OA

Description

Utility function for inspecting SOAs obtainable from an OA

Usage

guide_SOAs_from_OA(s, nOA, mOA, tOA, el = tOA, ...)

Arguments

S
nOA required; the number of runs of the OA
mOA required; the number of columns of the OA
tOA required; the strength of the OA; strengths larger than 5 are reduced to 5; el must not be larger than the (reduced) strength, except for tOA $=2$ with el=3, which is supported by the LLY algorithm
el the power to which s is to be taken, i.e. the SOA will have columns with $s^{\wedge} e l$ levels; default: tOA.
except for $\mathrm{tOA}=2$ and el=3, el can be chosen smaller than tOA , but not larger. If el is smaller than tOA, tOA is internally reduced before working out the possibilities.
.. currently unused

Details

The function provides the possible creation variants of an SOA from a strength tOA OA with mOA s-level columns in nOA runs, for an SOA that has columns in $s^{\wedge} e l$ levels. Note that the SOA may have nOA runs or $s * n O A$ runs, depending on the construction.

Value

The function returns a data frame, each row of which contains a possibility. There is example code for constructing the SOA. The code assumes that a given OA has the name OA; this can of course be modified by the user. Further code details can also be adjusted by the user (see the documentation of the respective functions).

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Groemping (2023a)
He and Tang (2013)
He, Cheng and Tang (2018)
Liu and Liu (2015)
Li, Liu and Yang (2021)
Shi and Tang (2020)
Zhou and Tang (2019)

See Also

guide_SOAs

Examples

```
## guide_SOAs_from_OA
## there is an OA(81, 3^10, 3) (L81.3.10 in package DoE.base)
## inspect what can be done with it:
guide_SOAs_from_OA(s=3, mOA=10, nOA=81, tOA=3)
## the output shows that a strength 3 OSOA
## with 4 columns of 27 levels each can be obtained in }81\mathrm{ runs
## and provides the necessary code (replace OA with L81.3.10)
## optimize=FALSE reduces example run time
OSOAs_LiuLiu(L81.3.10, t=3, optimize=FALSE)
## or that an SOA with 9 non-orthogonal columns can be obtained
## in the same number of runs
SOAs(L81.3.10, t=3)
```

```
mbound_LiuLiu
```


Description

bound for number of columns for LiuLiu OSOAs

Usage

mbound_LiuLiu(moa, t)

Arguments

moa	number of oa columns
t	strength used in the construction in function OSOAs_LiuLiu (it is assumed that the oa used has at least that strength)

Value

the maximum number of columns that can be obtained by the command OSOAs_LiuLiu(oa, $t=t$) where oa has at least strength t and consists of moa columns

Author(s)

Ulrike Groemping

References

\#' For full detail, see SOAs-package.
Liu and Liu 2015

Examples

```
## moa is the number of columns of an oa
moa <- rep(seq}(4,40),3
## t is the strength used in the construction
## the oa must have at least this strength
t<- rep(2:4, each=37)
## numbers of columns for the combination
mbounds <- mapply(mbound_LiuLiu, moa, t)
## depending on the number of levels
## the number of runs can be excessive
## for larger values of moa with larger t!
## t=3 and t=4 have the same number of columns, except for moa=4*j+3
plot(moa, mbounds, pch=t, col=t)
```


Description

Maximin distance level expansion similar to Xiao and Xu is implemented, using an optimization algorithm that is less demanding than the TA algorithm of Xiao and Xu

Usage

MDLEs(
oa,
ell,
noptim. rounds = 1,
optimize = TRUE,
noptim.oa = 1, dmethod = "manhattan",
$p=50$
)

Arguments

oa
matrix or data.frame that contains an ingoing symmetric OA. Levels must be denoted as 0 to $\mathrm{s}-1$ or as 1 to s .
ell the multiplier for each number of levels
noptim. rounds the number of optimization rounds; optimization may take very long, therefore the default is 1 , although more rounds are beneficial.
optimize logical: if FALSE, suppress optimization of expansion levels
noptim. oa integer: number of optimization rounds applied to initial oa itself before starting expansion
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
p p for phi p (the larger, the closer to maximin distance)

Details

The ingoing oa is possibly optimized for space-filling, using function phi_optimize with noptim. oa optimization rounds. The expansions themselves are again optimized for improving phi_p, using an algorithm which is a variant of Weng (2014), instead of the more powerful but also much more demanding algorithm proposed by Xiao and Xu.

Value

A matrix of class MDLE with attributes
phi_p the phi_p value that was achieved
type MDLE
optimized logical: same as the input parameter
call the call that produced the matrix
permpick matrix of lists of length s with elements from 0 to ell-1;
matrix element (i, j) contains the sequence of replacements used in function DcFromDp for constructing the level expansion of the ith level in the jth column

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Weng (2014)
Xiao and Xu (2018)

Examples

```
dim(aus <- MDLEs(DoE.base::L16.4.5, 2, noptim.rounds = 1))
permpicks <- attr(aus, "permpick")
## for people interested in internal workings:
## the code below produces the same matrix as MDLEs
SOAs:::DcFromDp(L16.4.5-1, 4,2, lapply(1:5, function(obj) permpicks[,obj]))
```

```
ocheck
```

functions to evaluate low order projection properties of (O) SOAs

Description

ocheck and ocheck3 evaluate pairwise or 3-orthogonality of columns, count_npairs evaluates the number of level pairs in 2D projections, count_nallpairs calculates corresponding total numbers of pairs.

Usage

ocheck(D, verbose = FALSE)
ocheck3(D, verbose = FALSE)
count_npairs(D, minn = 1)
count_nallpairs(ns)

Arguments

D
a matrix with factor levels or an object of class SOA; factor levels can start with 0 or with 1 , and need to be consecutively numbered
verbose logical; if TRUE, additional information is printed (table of correlations)
minn small integer number; the function counts pairs that are covered at least minn times
ns vector of numbers of levels for each column

Value

Functions ocheck and ocheck3 return a logical.
Functions count_npairs returns a vector of counts for level combinations covered in factor pairs (in the order of the columns of DoE.base: : : nchoosek ($n \operatorname{col}(\mathrm{D}), 2$) for the array in D, function count_nallpairs provides the total number of level combinations for designs with numbers of levels given in ns (and thus can be used to obtain a denominator for count_npairs).

Author(s)

Ulrike Groemping

Examples

```
#' ## Shi and Tang strength 3+ construction in 7 8-level factors for 32 runs
D <- SOAs_8level(32, optimize=FALSE)
## is an OSOA
ocheck(D)
## an OSOA of strength 3 with 3-orthogonality
## 4 columns in 27 levels each
## second order model matrix
D_o <- OSOAs_LiuLiu(DoE.base::L81.3.10, optimize=FALSE)
ocheck3(D_o)
## benefit of 3-orthogonality for second order linear models
colnames(D_o) <- paste0("X", 1:4)
y <- stats::rnorm(81)
mylm <- stats:: lm(y~(X1+X2+X3+X4)^2 + I(X1^2)+I(X2^2)+I(X3^2)+I(X4^2),
    data=as.data.frame(scale(D_o, scale=FALSE)))
crossprod(stats::model.matrix(mylm))
```

OSOAs

Function to create an OSOA from an $O A$

Description

An OSOA in ns runs of strength $2^{*}\left(\mathrm{~s}^{\wedge} 3\right.$ levels) or $2+\left(\mathrm{s}^{\wedge} 2\right.$ levels $)$ is created from an $\mathrm{OA}(\mathrm{n}, \mathrm{m}, \mathrm{s}, 2)$.

Usage

```
    OSOAs(
        oa,
        el \(=3\),
        \(\mathrm{m}=\mathrm{NULL}\),
        noptim. rounds = 1,
        noptim. repeats \(=1\),
        optimize = TRUE,
        dmethod = "manhattan",
        \(p=50\)
    )
```


Arguments

oa matrix or data.frame that contains an ingoing symmetric OA. Levels must be denoted as 0 to $\mathrm{s}-1$ or as 1 to s .
el the exponent of the number of levels, el=3 yields a strength 2^{*} OSOA in $s^{\wedge} 3$ levels, el $=2$ a strength $2+$ OSOA in $s^{\wedge} 2$ levels
$m \quad$ the desired number of columns of the resulting array; odd values of m will be reduced by one, so specify the next largest even m, if you need an odd number of columns (the function will do so, if possible; if $m=N U L L$, the maximum possible value is used.
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each
optimize logical: should space filling be optimized by level permutations?
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
$p \quad p$ for phi_p (the larger, the closer to maximin distance)

Details

The function implements the algorithms proposed by Zhou and Tang 2018 (s^2 levels) or Li, Liu and Yang 2021 ($\mathrm{s}^{\wedge} 3$ levels). Both are enhanced with the modification for matrix A by Groemping 2022. Level permutations are optimized using an adaptation of the algorithm by Weng (2014).

Suitable OAs for argument oa can e.g. be constructed with OA creation functions from package lhs or can be obtained from arrays listed in R package DoE.base

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Groemping (2023a)
Li, Liu and Yang (2021)
Weng (2014)
Zhou and Tang (2019)

Examples

```
## run with optimization for actual use!
## 54 runs with seven 9-level columns
OSOAs(DoE.base::L18[,3:8], el=2, optimize=FALSE)
## 54 runs with six 27-level columns
OSOAs(DoE.base::L18[,3:8], el=3, optimize=FALSE)
## 81 runs with four 9-level columns
OSOAs(DoE.base::L27.3.4, el=2, optimize=FALSE)
## An OA with 9-level factors (L81.9.10)
## has complete balance in 2D,
## however does not achieve 3D projection for
## all four collapsed triples
## It is up to the user to decide what is more important.
## I would go for the OA.
## 81 runs with four 27-level columns
OSOAs(DoE.base::L27.3.4, el=3, optimize=FALSE)
```

OSOAs_hadamard function to create a strength 3 OSOA with 8-level columns or a strength 3- OSOA with 4-level columns from a Hadamard matrix

Description

A Hadamard matrix in k runs is used for creating an OSOA in $\mathrm{n}=2 \mathrm{k}$ runs for at most $\mathrm{m}=\mathrm{k}-2$ columns (8-level) or $\mathrm{m}=\mathrm{k}-1$ columns (4-level).

Usage

```
    OSOAs_hadamard(
        m = NULL,
        \(\mathrm{n}=\mathrm{NULL}\),
        el \(=3\),
        noptim. rounds = 1,
        noptim. repeats \(=1\),
        optimize = TRUE,
        dmethod = "manhattan",
        \(p=50\)
    )
```


Arguments

m
n
el exponent for 2 , can be 2 or 3 : the OSOA will have columns with $2^{\wedge} \mathrm{el}(4$ or 8$)$ levels
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each
optimize logical: should space filling be optimized by level permutations?
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
p
the number of columns to be created; if n is also given, m must be compatible with it; at present, m can be at most 98 .
the number of runs to be created; n must be a multiple of 8 and can (at present) be at most 200 ; if m is also given, n must be compatible with it. logical: should space filling be optimized by level permutations?
p for phi p (the larger, the closer to maximin distance)

Details

At least one of m or n must be provided. For el=2, Zhou and Tang (2019) strength 3- designs are created, for el=3 strength 3 designs by Li, Liu and Yang (2021).
Li et al.'s creation of the matrix A has been enhanced by using a column specific fold-over, which is beneficial for the space-filling properties (see Groemping 2022).

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Groemping (2023a)
Li, Liu and Yang (2021)
Weng (2014)
Zhou and Tang (2019)

Examples

```
dim(OSOAs_hadamard(9, optimize=FALSE)) ## 9 8-level factors in 24 runs
dim(OSOAs_hadamard(n=16, optimize=FALSE)) ## 6 8-level factors in 16 runs
OSOAs_hadamard(n=24, m=6, optimize=FALSE) ## 6 8-level factors in 24 runs
    ## (though 10 would be possible)
dim(OSOAs_hadamard(m=35, optimize=FALSE)) ## 35 8-level factors in 80 runs
```


Description

Creates OSOAs from an OA according to the construction by Liu and Liu (2015). Strengths 2 to 4 are covered. Strengths 3 and 4 guarantee 3 -orthogonality.

Usage

OSOAs_LiuLiu(
oa,
$\mathrm{t}=\mathrm{NULL}$,
$\mathrm{m}=\mathrm{NULL}$,
noptim. rounds = 1,
noptim. repeats $=1$, optimize = TRUE, dmethod = "manhattan", $p=50$
)

Arguments

oa
t
m
matrix or data.frame; a symmetric orthogonal array of strength at least t the requested strength of the OSOA
the requested number of columns of the OSOA (at most mbound_LiuLiu(ncol(oa), t)).
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each
optimize logical: should space filling be optimized by level permutations?
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
$\mathrm{p} \quad \mathrm{p}$ for phi_p (the larger, the closer to maximin distance)

Details

The number of columns goes down dramatically with the requested strength. However, the strength 3 or 4 arrays may be worthwhile, because they guarantee 3 -orthogonality, which implies that (quantitative) linear models with main effects and second order effects can be robustly estimated.
Optimization is less successful for this construction of OSOAs; for small arrays, the level permutations make (almost) no difference.
Function mbound_LiuLiu(moa, t) calculates the number of columns that can be obtained from a strength t OA with moa columns (if such an array exists, the function does not check that).
Ingoing arrays can be obtained from oa-generating functions of R package lns like createBoseBush, or from OAs in R package DoE.base, or from 2-level designs created with R package $\mathbf{F r F} 2$ (see example section).

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Liu and Liu (2015)
Weng (2014)

Examples

```
## strength 2, very small (four 9-level columns in 9 runs)
OSOA9 <- OSOAs_LiuLiu(DoE.base::L9.3.4)
## strength 3, from a Plackett-Burman design of FrF2
## 10 8-level columns in 40 runs with OSOA strength 3
oa <- suppressWarnings(FrF2::pb(40)[,c(1:19,39)])
### columns 1 to 19 and 39 together are the largest possible strength 3 set
OSOA40 <- OSOAs_LiuLiu(oa, optimize=FALSE) ## strength 3, 8 levels
### optimize would improve phi_p, but suppressed for saving run time
## 9 8-level columns in 40 runs with OSOA strength 3
oa <- FrF2::pb(40,19)
### 9 columns would be obtained without the final column in oa
mbound_LiuLiu(19, t=3) ## example for which q=3
mbound_LiuLiu(19, t=4) ## t=3 has one more column than t=4
OSOA40_2 <- OSOAs_LiuLiu(oa, optimize=FALSE) ## strength 3, 8 levels
### optimize would improve phi_p, but suppressed for saving run time
## starting from a strength 4 OA
oa <- FrF2::FrF2(64,8)
## four 16 level columns in 64 runs with OSOA strength 4
OSOA64 <- OSOAs_LiuLiu(oa, optimize=FALSE) ## strength 4, 16 levels
### reducing the strength to 3 does not increase the number of columns
mbound_LiuLiu(8, t=3)
### reducing the strength to 2 doubles the number of columns
mbound_LiuLiu(8, t=2)
## eight 4-level columns in 64 runs with OSOA strength 2
OSOA64_2 <- OSOAs_LiuLiu(oa, t=2, optimize=FALSE)
## fulfills the 2D strength 2 property
soacheck2D(OSOA64_2, s=2, el=2, t=2)
### fulfills also the 3D strength 3 property
soacheck3D(OSOA64_2, s=2, el=2, t=3)
### fulfills also the 4D strength 4 property
DoE.base::GWLP(OSOA64/2)
### but not the 3D strength 4 property
soacheck3D(OSOA64_2, s=2, el=2, t=4)
### and not the 2D 4x2 and 2x4 stratification balance
soacheck2D(OSOA64_2, s=2, el=2, t=3)
## six 36-level columns in 72 runs with OSOA strength 2
oa <- DoE.base::L72.2.5.3.3.4.1.6.7[,10:16]
OSOA72 <- OSOAs_LiuLiu(oa, t=2, optimize=FALSE)
```

OSOAs_regular Function to create an OSOA in $s^{\wedge} 2$ or $s^{\wedge} 3$ levels and $s^{\wedge} k$ runs from a basic number of levels s and a power k

Description

The OSOA in $\mathrm{s}^{\wedge} \mathrm{k}$ runs accommodates at most $\mathrm{m}=\left(\mathrm{s}^{\wedge}(\mathrm{k}-1)-1\right) /(\mathrm{s}-1)$ columns in $\mathrm{s}^{\wedge} 2$ levels or $\mathrm{m}^{\prime}=2 *$ floor $(\mathrm{m} / 2)$ columns in $\mathrm{s}^{\wedge} 3$ levels.

Usage

OSOAs_regular(
s ,
k,
el = 3,
$\mathrm{m}=\mathrm{NULL}$,
noptim. rounds = 1 ,
noptim. repeats $=1$,
optimize = TRUE,
dmethod = "manhattan",
$p=50$
)

Arguments

$s \quad$ the prime or prime power to use (do not use for $s=2$, because other method is better); the resulting array will have pairwise orthogonal columns in $s^{\wedge} t$ levels
$k \quad$ integer $>=3$; determines the run size: the resulting array will have $\mathrm{s}^{\wedge} \mathrm{k}$ runs
el 2 or 3 ; the exponent of the number of levels, el=3 yields a strength $2 *$ or 3 OSOA in $\mathrm{s}^{\wedge} 3$ levels, el $=2$ a strength $2+$ or 3 - OSOA in $\mathrm{s}^{\wedge} 2$ levels
m the desired number of columns of the resulting array; for el=3, odd values of m will be reduced by one, so specify the next largest even m , if you need an odd number of columns (the function will do so, if possible); if $m=N U L L$, the maximum possible value is used. This is at most $\left(\mathrm{s}^{\wedge}(\mathrm{k}-1)-1\right) /(\mathrm{s}-1)$, or one less if this is odd and el=3.
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each
optimize logical: should space filling be optimized by level permutations?
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
$\mathrm{p} \quad \mathrm{p}$ for phi_p (the larger, the closer to maximin distance)

Details

The function implements the algorithms proposed by Zhou and Tang 2018 (s^2 levels) or Li, Liu and Yang 2021 ($\mathrm{s}^{\wedge} 3$ levels), enhanced with the modification for matrix A by Groemping (2023a). Level permutations are optimized using an adaptation of the algorithm by Weng (2014).
If m is specified, the function uses the last m columns of a saturated OA produced by function createSaturated($\mathrm{s}, \mathrm{k}-1$).
If m is small enough that a resolution IV / strength 3 OA for s levels in $s^{\wedge}(k-1)$ runs exists, function OSOAs should be used with such an OA (which can be obtained from package FrF2 for s=2 or from package DoE.base for $s>2$). For $s=2$, function OSOAs_hadamard may also be a better choice than OSOAs_regular for up to 192 runs.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package. Groemping (2023a)
Li, Liu and Yang (2021)
Weng (2014)
Zhou and Tang (2019)

Examples

```
## 13 columns in 9 levels each
OSOAs_regular(3, 4, el=2, optimize=FALSE) ## 13 columns, phi_p about 0.117
# optimizing level permutations typically improves phi_p a lot
# OSOAs_regular(3, 4, el=2) ## 13 columns, phi_p typically below 0.055
```

```
phi_optimize
```


Description

takes an $\mathrm{n} \times \mathrm{m}$ array and returns an $\mathrm{n} \times \mathrm{m}$ array with improved phi_p value (if possible)

Usage

```
phi_optimize(
    D,
    noptim.rounds = 1,
    noptim. repeats \(=1\),
    dmethod = "manhattan",
    \(p=50\)
    )
```


Arguments

D numeric matrix or data.frame with numeric columns, nx m . A symmetric array (e.g. an OA) with nl levels for each columns. Levels must be coded as 0 to nl - 1 or as 1 to nl . levels from
noptim. rounds number of rounds in the Weng algorithm
noptim.repeats number of independent repeats of the Weng algorithm
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
$p \quad p$ for phi_p (the larger, the closer to maximin distance)

Details

The function uses the algorithm proposed by Weng (2014) for SOA optimization:
It starts with a random permutation of column levels.
Initially, individual columns are randomly permuted (m permuted matrices, called one-neighbours), and the best permutation w.r.t. the phi_p value (manhattan distance) is is made the current optimum. This continues, until the current optimum is not improved by a set of randomly drawn oneneighbours.
Subsequently, pairs of columns are randomly permuted (choose ($\mathrm{m}, 2$) permuted matrices, called two-neighbours). If the current optimum can be improved or the number of optimization rounds has not yet been exhausted, a new round with one-neighbours is started with the current optimum. Otherwise, the current optimum is returned, or an independent repeat is initiated (if requested).
Limited experience suggests that an increase of noptim. rounds from the default 1 is often helpful, whereas an increase of noptim. repeats did not yield as much improvement.

Value

an $\mathrm{n} \times \mathrm{m}$ matrix

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Weng (2014)

Examples

```
    oa <- lhs::createBoseBush(8,16)
    print(phi_p(oa, dmethod="manhattan"))
    oa_optimized <- phi_optimize(oa)
    print(phi_p(oa_optimized, dmethod="manhattan"))
```

phi_p Functions to evaluate space filling of an array

Description

phi_p calculates the discrepancy
phi_p calculates the discrepancy

Usage

phi_p(D, dmethod = "manhattan", $p=50$)
mindist(D, dmethod = "manhattan")
phi_p(D, dmethod = "manhattan", $p=50$)

Arguments

D
an array or an object of class SOA or MDLE
dmethod the distance to use, "manhattan" (default) or "euclidean"
p
the value for p to use in the formula for phi_p

Details

Small values of phi_p tend to be associated with good performance on the maximin distance criterion, i.e. with a larger minimum distance.
small values of phi_p are associated with good performance on the maximin distance criterion

Value

both functions return a number
a number

Author(s)

Ulrike Groemping
Ulrike Groemping

Examples

```
A <- DoE.base::L25.5.6 ## levels 1:5 for each factor
phi_p(A)
mindist(A) # 5
A2 <- phi_optimize(A)
phi_p(A2) ## improved
mindist(A2) ## 6, improved
A <- DoE.base::L16.4.5 ## levels 1:4 for each factor
phi_p(A)
phi_p(A, dmethod="euclidean")
A2 <- A
A2[,4] <- c(2,4,3,1)[A[,4]]
phi_p(A2)
## Not run:
    ## A2 has fewer minimal distances
        par(mfrow=c(2,1))
        hist(dist(A), xlim=c(2,6), ylim=c(0,40))
        hist(dist(A2), xlim=c(2,6), ylim=c(0,40))
## End(Not run)
```

 print. SOA
 Print Methods

Description

Print Methods

Usage

\#\# S3 method for class 'SOA'
print(x, ...)
\#\# S3 method for class 'MDLE'
print(x, ...)
\#\# S3 method for class 'Spattern'
print(x, ...)
\#\# S3 method for class 'dim_wt_tab'
print(x, ...)

Arguments

x
object to be printed (SOA, OSOA, MDLE, Spattern)
... further arguments for function print

Value

no value is returned

Examples

```
myOSOA <- OSOAs_regular(s=3, k=3, optimize=FALSE)
myOSOA
str(myOSOA) ## structure for comparison
Spat <- Spattern(myOSOA, s=3)
dim_wt_tab(Spat) ## print method prints NAs as .
print(dim_wt_tab(Spat), na.print=" ")
```

```
SOAs
```

function to create SOAs of strength t with the GOA construction by He and Tang.

Description

takes an $\mathrm{OA}(\mathrm{n}, \mathrm{m}, \mathrm{s}, \mathrm{t})$ and creates an $\mathrm{SOA}\left(\mathrm{n}, \mathrm{m}^{\prime}, \mathrm{s}^{\wedge} \mathrm{t}^{\prime}, \mathrm{t}^{\prime}\right)$ with $\mathrm{t}^{\prime}<=\mathrm{t}$.

Usage

```
SOAs(
    oa,
    t = 3,
    m = NULL,
    noptim.rounds = 1,
    noptim.repeats = 1,
    optimize = TRUE,
    dmethod = "manhattan",
    p = 50
)
```


Arguments

oa
t
m
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each
optimize logical, default TRUE; if FALSE, suppresses optimization
dmethod method for the calculation of phi_p, "manhattan" (default) or "euclidean"
p p for phi p (the larger, the closer to maximin distance)

Details

The resulting SOA will have at most m' columns in $s^{\wedge} t$ levels and will be of strength t. m'(m, t) is a function of the number of columns of oa (denoted as m) and the strength $t: m^{\prime}(m, 2)=m$, $m^{\prime}(m, 3)=m-1, m^{\prime}(m, 4)=$ floor $(m / 2), m^{\prime}(m, 5)=$ floor $((m-1) / 2)$.
Suitable OAs for argument oa can e.g. be constructed with OA creation functions from package lhs or can be obtained from arrays listed in R package DoE.base.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
He and Tang (2013)
Weng (2014)

Examples

```
aus <- SOAs(DoE.base::L27.3.4, optimize=FALSE) ## t=3 is the default
dim(aus)
soacheck2D(aus, s=3, el=3) ## check for 2*
soacheck3D(aus, s=3, el=3) ## check for 3
aus2 <- SOAs(DoE.base::L27.3.4, t=2, optimize=FALSE)
```

```
## t can be smaller than the array strength
## --> more columns with fewer levels each
dim(aus2)
soacheck2D(aus2, s=3, el=2, t=2) # check for 2
soacheck3D(aus2, s=3, el=2) # t=3 is the default (check for 3-)
```

SOAs2plus_regular function to create SOAs of strength $2+$ from regular s-level designs

Description

creates an array in $\mathrm{s}^{\wedge} \mathrm{k}$ runs with columns in $\mathrm{s}^{\wedge} 2$ levels for prime or prime power s

Usage

```
SOAs2plus_regular(
    s,
    k,
    m = NULL,
    orth = TRUE,
    old = FALSE,
    noptim.rounds = 1,
    noptim.repeats = 1,
    optimize = TRUE,
    dmethod = "manhattan",
    p = 50
)
```


Arguments

S
k
m
orth
old logical, relevant for orth=TRUE only: if TRUE, limits possible columns for B to the columns not eligible for A (instead of the columns not used in A); should only be used for reproducing designs created by version 1.1 or earlier
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each

optimize	logical: should optimization be applied? default TRUE
dmethod	method for the distance in phi_p, "manhattan" (default) or "euclidean"
p	p for phi_p (the larger, the closer to maximin distance)

Details

The construction is by He, Cheng and Tang (2018), Prop. 1 (C2) / Theorem 2 for $\mathrm{s}=2$ and Theorem 4 for $s>2$.
B is chosen as an OA of strength 2, if possible, which yields orthogonal columns according to Zhou and Tang (2019). This is implemented using a matching algorithm for bipartite graphs from package igraph; the smaller m, the more likely that orthogonality can be achieved. However, strength $2+$ SOAs are not usually advisable for m small enough that a strength 3 OA exists.
Optimization according to Weng has been added (separate level permutations in columns of A and B, noptim. rounds times). Limited tests suggest that a single round (noptim. rounds=1) often does a very good job (e.g. for $\mathrm{s}=2$ and $\mathrm{k}=4$), and further rounds do not yield too much improvement; there are also cases (e.g. $\mathrm{s}=5$ with $\mathrm{k}=3$), for which the unoptimized array has a better phi_p than what can be achieved by most optimization attempts from a random start.

The search for orthogonal columns can take a long time for larger arrays, even without optimization. If this is prohibitive (or not considered valuable), orth=FALSE causes the function to create the matrix B for equation $D=2 A+B$ with less computational effort.
The subsequent optimization, if not switched off, is of the same complexity, regardless of the value for orth. Its duration heavily depends on the number of optimization steps that are needed before the algorithm stops. This has not been systematically investigated; cases for which the total run time with optimization is shorter for orth=TRUE than for orth=FALSE have been observed.

With package version 1.2, the creation of SOAs has changed: Up to version 1.1, the columns of B were chosen only from those columns that were not eligible for A, whereas the new version chooses them from those columns that are not used for A. This increases the chance to achieve geometrically orthogonal columns.
Users who want to reproduce a design from an earlier version can use argument old.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Note

Strength $2+$ SOAs can accommodate a large number of factors with reasonable stratified balance behavior. Note that their use is not usually advisable for m small enough that a strength 3 OA with $\mathrm{s}^{\wedge} 2$ level factors exists.

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Groemping (2023a) He, Cheng and Tang (2018)
Weng (2014)
Zhou and Tang (2019)

Examples

```
## unoptimized OSOA with 8 16-level columns in 64 runs
## (maximum possible number of columns)
plan64 <- SOAs2plus_regular(4, 3, optimize=FALSE)
ocheck(plan64) ## the array has orthogonal columns
## optimized SOA with 20 9-level columns in 81 runs
## (up to 25 columns are possible)
plan <- SOAs2plus_regular(3, 4, 20)
## many column pairs have only 27 level pairs covered
count_npairs(plan)
## an OA would exist for 10 9-level factors (DoE.base::L81.9.10)
## it would cover all pairs
## (SOAs are not for situations for which pair coverage
## is of primary interest)
```


Description

creates strength 3 or $3+$ SOAs with 8 -level factors in $2^{\wedge} k$ runs, k at least 4 . These SOAs have at least some more balance than guaranteed by strength 3 .

Usage

```
SOAs_8level(
    n,
    m = NULL,
    constr = "ShiTang_alphabeta",
    noptim.rounds = 1,
    noptim.repeats = 1,
    optimize = TRUE,
    dmethod = "manhattan",
    p = 50
)
```


Arguments

n run size of the SOA; power of 2, at least 16
m number of colums; at most $5 \mathrm{n} / 16$ for constr="ShiTang_alpha" (exception: only 9 for $n=32$), at most $n / 4$ for constr="ShiTang_alphabeta"; for $m=N U L L$, defaults are $m=5 n / 16$ and $m=n / 4-1$, respectively; the latter yields strength $3+$.
constr construction method. Must be one of "ShiTang_alphabeta", "ShiTang_alpha". See Details section
noptim. rounds the number of optimization rounds for each independent restart
noptim. repeats the number of independent restarts of optimizations with noptim. rounds rounds each
optimize logical: should space filling be optimized by level permutations?
dmethod distance method for phi_p, "manhattan" (default) or "euclidean"
$p \quad p$ for phi_p (the larger, the closer to maximin distance)

Details

The construction is implemented as described in Groemping (2023a).
The 8-level SOAs created by this construction have strength 3 and at least the additional property alpha, which means that all pairs of columns achieve perfect 4 x 4 balance, if consecutive level pairs $(01,23,45,67)$ are collapsed.
The "ShiTang_alphabeta" construction additionally yields perfect $4 \times 2 \times 2$ balance, if one column is collapsed to 4 levels, while two further columns are collapsed to 2 levels (0123 vs 4567). with m $=n / 4$ columns, the "ShiTang_alphabeta" construction has a single pair of correlated columns, all other columns are uncorrelated, due to a modification of Shi and Tang's column allocation that was proposed in Groemping (2023a).

For $m<=n / 4-1$, the "ShiTang_alphabeta" construction also yields perfect balance for 8×2 projections in 2D (i.e. if one original column with another column collapsed to two levels). Thus, it yields all strength 4 properties in 2D and 3D, which is called strength 3+. Furthermore, Groemping (2023a) proposed an improved choice of columns for matrix C that implies orthogonal columns in this case.

Value

matrix of class SOA with the attributes that are listed below. All attributes can be accessed using function attributes, or individual attributes can be accessed using function attr. These are the attributes:
type the type of array (SOA or OSOA)
strength character string that gives the strength
phi_p the phi_p value (smaller=better)
optimized logical indicating whether optimization was applied
permpick matrix that lists the id numbers of the permutations used
perms2pickfrom optional element, when optimization was conducted: the overall permutation list to which the numbers in permlist refer
call the call that created the object

Author(s)

Ulrike Groemping

References

For full detail, see SOAs-package.
Groemping (2023a)
Shi and Tang (2020)
Weng (2014)

Examples

```
## use with optimization for actually using such designs
## n/4 - 1 = 7 columns, strength 3+
SOAs_8level(32, optimize=FALSE)
## n/4 = 8 columns, strength 3 with alpha and beta
SOAs_8level(32, m=8, optimize=FALSE)
## 9 columns (special case n=32), strength 3 with alpha
SOAs_8level(32, constr="ShiTang_alpha", optimize=FALSE)
## 5*n/16 = 5 columns, strength 3 with alpha
SOAs_8level(16, constr="ShiTang_alpha", optimize=FALSE)
```

Spattern
functions to evaluate stratification properties of (O)SOAs and GSOAs

Description

soacheck2D and soacheck3D evaluate 2D and 3D projections, Spattern calculates the stratification pattern by Tian and Xu (2022), and dim_wt_tab extracts and formats the dim_wt_tab attribute of Spattern.

Usage

Spattern(D, s, maxwt $=4$, maxdim $=$ NULL, verbose $=$ FALSE, \ldots)
dim_wt_tab(pat, dimlim = NULL, wtlim = NULL, ...)
soacheck2D(D, s = 3, el = $3, \mathrm{t}=3$, verbose $=$ FALSE)
soacheck3D(D, s = 3, el = 3, t = 3, verbose = FALSE)

Arguments

D
a matrix with factor levels or an object of class SOA or a data.frame object with numeric columns.
Functions soacheck2D and soacheck3D require levels that are consecutively numbered (starting with 0 or 1).
Function Spattern also works, if all columns of D have the same number of unique numeric values; the function will code them using power contrasts.
s
maxwt
the prime or prime power according to which the array is checked
maximum weight to be considered for the pattern (default: 4; see Details);
if the specified limit is larger than maxdim*el, it is reduced accordingly (where $e l$ is such that $s^{\wedge} e l$ is the number of levels)
maxdim maximum dimension to be considered for the pattern (default: NULL implies that maxdim=min(maxwt, ncol(D)); see also Details);
if the specified limit is larger than $m=n c o l(D)$, it is reduced to m
verbose logical; if TRUE, additional information is printed (for Spattern, status information during run time; for the SOAcheck. . . functions, confounded pair or triple projections with A2 or A3, respectively, or table of correlations)
... currently not used
pat an object of class Spattern
dimlim integer; limits the returned dimension rows to the rows from 1 up to dimlim; the bottom margin continues to include all dimensions that were used in calculating pat
wtlim integer; limits the returned weight columns to the columns from 1 up to wtlim; the right margin continues to include all weights that were used in calculating pat
el
t
the exponent so that the number of levels of the array is $s^{\wedge} \mathrm{el}$ (if s is not NULL) the strength for which to look (2,3 , or 4), equal to the sum of the exponents in the stratification dimensions; for example, soacheck2D considers
sxs 2D projections with $t=2$, $s^{\wedge} 2 x s$ and sxs^2 projections with $t=3$, and $\mathrm{s}^{\wedge} 3 \mathrm{xs}, \mathrm{s}^{\wedge} 2 \mathrm{xs}^{\wedge} 2$ and $\mathrm{sxs}^{\wedge} 3$ projections with $\mathrm{t}=4$. If $t=4$ and el=2, property gamma ($s^{\wedge} 3 \mathrm{xs}^{\mathrm{s}}$ and $\mathrm{s} x \mathrm{~s}^{\wedge} 3$) is obviously impossible and will not be part of the checks.

Details

Function Spattern calculates the stratification pattern or S pattern as proposed in Tian and Xu (2022) (under the name space-filling pattern); the details and the implementation in this function are described in Groemping (2023b); the function uses the full-factorial-based Helmert contrasts.
Position j in the S pattern shows the imbalance when considering $s^{\wedge} j$ strata. j is also called the (total) weight. $j=1$ can occur for an individual column only. $j=2$ can be obtained either for an $s^{\wedge} 2$ level version of an individual column or for the crossing of $s^{\wedge} 1$ level versions of two columns, and so forth.

Obtaining the entire S pattern can be computationally demanding. The arguments maxwt and maxdim limit the effort (choose NULL for no limit):
maxwt gives an upper limit for the weight j of the previous paragraph; if NULL, maxwt is set to maxdim*el.
maxdim limits the number of columns that are considered in combination.
When using a non-null maxdim, pattern entries for j larger than maxdim can be smaller than if one would not have limited the dimension. Otherwise, dimensionality is unlimited, which is equivalent to specifying maxdim as the minimum of maxwt and ncol (D).
Spattern with maxdim=2 and maxwt=t can be used as an alternative to soacheck2D, and analogously Spattern with maxdim=2 and maxwt=t can be used as an alternative to soacheck3D.
An Spattern object object can be post-processed with function dim_wt_tab. That function splits the S pattern into contributions from effect column groups of different dimensions, arranged with a row for each dimension and a column for each weight. If Spattern was called with maxdim=NULL and maxwt=NULL, the output object shows the GWLP in the right margin and the S pattern in the bottom margin. If Spattern was called with relevant restrictions on dimensions (maxdim, default 4) and/or weights (maxwt, default 4), sums in the margins can be smaller than they would be for unconstrained dimension and weights.
Functions soacheck2D and soacheck3D were available before function Spattern; many of their use cases can now be handled with Spattern instead. The functions are often fast to yield a FALSE outcome, but can be very slow to yield a TRUE outcome for larger designs.
The functions inspect 2D and 3D stratification, respectively. Each column must have $s^{\wedge} e l$ levels. t specifies the degree of balance the functions are asked to look for.
Function soacheck2D,

- with el=t=2, looks for strength 2 conditions ($\mathrm{s}^{\wedge} 2$ levels, sxs balance),
- with el $=2$, $\mathrm{t}=3$, looks for strength $2+/ 3$ - conditions ($\mathrm{s}^{\wedge} 2$ levels, $\mathrm{s}^{\wedge} 2 \mathrm{xs}$ balance),
- with el=t=3, looks for strength $2 * / 3$ conditions ($s^{\wedge} 3$ levels, $s^{\wedge} 2 x s$ balance).
- with el=2, $\mathrm{t}=4$, looks for the enhanced strength $2+/ 3$ - property alpha ($\mathrm{s}^{\wedge} 2$ levels, $\mathrm{s}^{\wedge} 2 \mathrm{xs}^{\wedge} 2$ balance).
- and with el $=3, \mathrm{t}=4$, looks for strength $3+/ 4$ conditions ($\mathrm{s}^{\wedge} 3$ levels, $\mathrm{s}^{\wedge} 3 \mathrm{xs}$ and $\mathrm{s}^{\wedge} 2 \mathrm{xs}^{\wedge} 2$ balance).

Function soacheck3D,

- with el=2, $t=3$, looks for strength 3 - conditions ($s^{\wedge} 2$ levels, $s x s x s$ balance),
- with $\mathrm{el}=\mathrm{t}=3$, looks for strength 3 conditions ($\mathrm{s}^{\wedge} 3$ levels, sxsxs balance),
- and with el $=3, \mathrm{t}=4$, looks for strength $3+/ 4$ conditions ($\mathrm{s}^{\wedge} 3$ levels, $\mathrm{s}^{\wedge} 2$ xsxs balance).

If verbose=TRUE, the functions print the pairs or triples that violate the projection requirements for 2 D or 3 D .

Value

Function Spattern returns an object of class Spattern that is a named vector with attributes:
The attribute call holds the function call (and thus documents, e.g., limits set on dimension and/or weight).
The attribute dim_wt_tab holds a table of contributions split out by dimension (rows) and weights (columns), which has class dim_wt_tab and the further attribute Spattern-class.
Function dim_wt_tab returns the dim_wt_tab attribute of an object of class Spattern; note that the object contains NA values for combinations of dimension and weight that cannot occur.
Function dim_wt_tab postprocesses an Spattern object and produces a table that holds the S pattern entries separated by the dimension of the contributing effect column group (rows) and the weight of the effect column micro group (columns). The margin shows row and column sums (see Details section for caveats).

References

For full detail, see SOAs-package.
Groemping (2023a)
Groemping (2023b)
He and Tang (2013)
Shi and Tang (2020)
Tian and Xu (2022)

Examples

```
nullcase <- matrix(0:7, nrow=8, ncol=4)
soacheck2D(nullcase, s=2)
soacheck3D(nullcase, s=2)
Spattern(nullcase, s=2)
Spattern(nullcase, s=2, maxdim=2)
    ## the non-zero entry at position 2 indicates that
    ## soacheck2D does not comply with t=2
(Spat <- Spattern(nullcase, s=2, maxwt=4))
    ## comparison to maxdim=2 indicates that
    ## the contribution to S_4 from dimensions
    ## larger than 2 is 1
## postprocessing Spat
dim_wt_tab(Spat)
```

```
## Shi and Tang strength 3+ construction in 7 8-level factors for 32 runs
D <- SOAs_8level(32, optimize=FALSE)
## check for strength 3+ (default el=3 is OK)
## 2D check
soacheck2D(D, s=2, t=4)
## 3D check
soacheck3D(D, s=2, t=4)
## using Spattern (much faster for many columns)
    ## does not have strength 4
    Spattern(D, s=2)
    ## but complies with strength 4 for dim up to 3
    Spattern(D, s=2, maxwt=4, maxdim=3)
    ## inspect more detail
    Spat <- (Spattern(D, s = 2, maxwt=5))
    dim_wt_tab(Spat)
```


Index

```
* array
    guide_SOAs, 8
    guide_SOAs_from_OA, 9
'SOAs-package' (SOAs-package), 2
_PACKAGE (SOAs-package), 2
attr, 15, 17, 19, 22, 27, 29, 32
attributes, 15, 17, 19, 22, 27, 29, 32
contr.FFbHelmert, 4, 6
contr.FFbPoly (contr.FFbHelmert), 4
contr.Power, 5
contr.TianXu, 4, 5,6
count_nallpairs(ocheck), 13
count_npairs (ocheck), }1
createSaturated, 7, 22
dim_wt_tab (Spattern), 33
DoE.base, }
FrF2,7
guide_SOAs, 3, 8, 10
guide_SOAs_from_OA, 3, 9, 9
mbound_LiuLiu, 11
MDLEs, 3, 12
mindist (phi_p), 24
ocheck, 3, 13
ocheck3,3
ocheck3 (ocheck), 13
OSOAs, 3, 14, }2
OSOAs_hadamard, 3, 16, 22
OSOAs_LiuLiu, 2, 18
OSOAs_regular, 3, 21, 22
phi_optimize, 12,23
phi_p, 2, 3, 12, 15, 17, 19, 21, 23, 24, 27, 29,
    31
print.dim_wt_tab(print.SOA), 25
```

print.MDLE (print.SOA), 25
print. SOA, 25
print.Spattern (print.SOA), 25
soacheck2D, 3
soacheck2D (Spattern), 33
soacheck3D, 3
soacheck3D (Spattern), 33
SOAs, 2, 26
SOAs-package, 2
SOAs2plus_regular, 2, 28
SOAs_8level, 2, 30
Spattern, 3, 4, 6, 33
XiaoXuMDLE, 3

