Package 'SampleSize4ClinicalTrials'

October 12, 2022
Type Package
Title Sample Size Calculation for the Comparison of Means or
Proportions in Phase III Clinical Trials
Version 0.2.3
Author Hongchao Qi, Fang Zhu
Maintainer Hongchao Qi hcqi1992@gmail.com
Description
There are four categories of Phase III clinical trials according to different research goals, includ-
ing (1) Testing for equality, (2) Superiority trial, (3) Non-inferiority trial, and (4) Equiva-
lence trial. This package aims to help researchers to calculate sample size when compar-
ing means or proportions in Phase III clinical trials with different research goals.
Encoding UTF-8LazyData true
RoxygenNote 7.1.1
License GPL-3
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-09 00:20:09 UTC
R topics documented:
SampleSize4ClinicalTrials 2
ssc_meancomp 2
ssc_propcomp 3
Index 5

SampleSize4ClinicalTrials

Sample Size Calculation for the Comparison of Means or Proportions in Phase III Clinical Trials

Description

There are four categories for Phase III clinical trials according to different research goals, including (1) Testing for equality, (2) Superiority trial, (3) Non-inferiority trial, and (4) Equivalence trial. This package aims to help researchers to calculate sample size when comparing means or proportions in Phase III clinical trials with different research goals.

Author(s)

Hongchao Qi, Fang Zhu

ssc_meancomp | Sample Size Calculation for the Comparison of Means in Phase III |
| :--- |
| Clinical Trials |

Description

This function aims to calculate sample size for the comparison of means in Phase III clinical trials.

Usage

ssc_meancomp(design, ratio, alpha, power, sd, theta, delta)

Arguments

design \quad The design of the clinical trials.
1L
Testing for equality
2L
Superiority trial
3L
Non-inferiority trial
4L
Equivalence trial.
ratio The ratio between the number of subjects in the treatment arm and that in the control arm
alpha Type I error rate
power \quad Statistical power of the test (1-type II error rate)
sd The standard deviation of observed outcomes in both arms
theta The true mean difference between two arms
delta The prespecified superiority, non-inferiority or equivalence margin

Value

samplesize

References

Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman \& Hall/CRC Biostatistics Series.
Yin, G. 2012. Clinical Trial Design: Bayesian and Frequentist Adaptive Methods. John Wiley \& Sons.

Examples

\#\#The comparison of means, a non-inferiority trial and the non-inferiority margin is -0.05 ssc_meancomp (design $=3 \mathrm{~L}$, ratio $=1$, alpha $=0.05$, power $=0.8, \mathrm{sd}=0.1$, theta $=0$, delta $=-0.05$)

```
ssc_propcomp Sample Size Calculation for the Comparison of Proportions in Phase
    III Clinical Trials
```


Description

This function aims to calculate sample size for the comparison of proportions in Phase III clinical trials.

Usage

ssc_propcomp(design, ratio, alpha, power, p1, p2, delta)

Arguments

design \quad The design of the clinical trials.
1L
Testing for equality
2L
Superiority trial
3L
Non-inferiority trial
4L
Equivalence trial.
ratio The ratio between the number of subjects in the treatment arm and that in the control arm.
alpha Type I error rate
power \quad Statistical power of the test (1-type II error rate)
p1 The true mean response rate of the treatment arm
p2 The true mean response rate of the control arm
delta The prespecified superiority, non-inferiority or equivalence margin

Value

samplesize

References

Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman \& Hall/CRC Biostatistics Series.
Yin, G. 2012. Clinical Trial Design: Bayesian and Frequentist Adaptive Methods. John Wiley \& Sons.

Examples

> \#\#The comparison of proportions, an equivalence trial and the equivalence margin is 0.2 ssc_propcomp(design $=4 \mathrm{~L}$, ratio $=1$, alpha $=0.05$, power $=0.8, \mathrm{p} 1=0.75, \mathrm{p} 2=0.80$, delta $=0.2$)

Index

SampleSize4ClinicalTrials, 2
ssc_meancomp, 2
ssc_propcomp, 3

