
”Watersheds”: Spatial watershed aggregation and

spatial drainage network analysis

Jairo A. Torres
Institute for Geoinformatics, University of Münster, Münster, Germany

arturo.torres@uni-muenster.de

August 13, 2013

1 Introduction

The present document has the purpose of illustrating the package Watersheds implemented in the
programming language R Project for Statistical Computing (Ihaka & Gentleman, 1996; R Develop-
ment Core Team, 2013).

The package allows spatial analysis for watersheds aggregation and ordering accordingly to an
outlet point and size of tributary watershed of the current watershed. Also, enables spatial drainage
networks analysis inside the aggregated watersheds. It makes use of the functionalities of the spatial
classes, functions and methods of the package sp (Pebesma & Bivand, 2005-2012).

Creation and handling of objects class Watershed for identifying the subbasin that contains the
current station (class SpatialPoints) and subsets the zhyd object to subbasin and extract the
current zhy object that contains station via the S4 method Watershed.Order. Identification of
the inlet and outlet stretches and inlet and outlet nodes of the zhyd. Implementation of functions
Watershed. ,IOR1, IOR2, IOR3, and IOR4 for determining the actual inlet and outlet nodes. S4
methods Watershed.Order2 and Watershed.Tributary for defining tributary nodes and tributary
catchments of the current zhyd watershed.

2 The data: river Weser basin, Germany

The package has an example dataset of the ECRINS database for the river Weser basin, Germany.
The European Environment Agency (EEA) has been developed the Catchments and Rivers Network
System (ECRINS) version 1.1. The ECRINS is the hydrographical system currently in use at the
European level as well as widely serving as the reference system for the Water Information System
(WISE). The current version of ECRINS is based on previous work carried out by the Joint Research
Centre (JRC) Catchment Characterisation and Modelling (CCM) and the EEA (European Lakes,
Dams and Reservoirs Database (Eldred2), European Rivers and Catchments (ERICA)), (European
Environment Agency - EAA, 2012).

2.1 Subsets

The dataset contains the following subsets:

• basin: an object SpatialPolygonsDataFrame as is defined in package sp that represents the
river Weser basin. The data slot contains 6 variables as attributes of 1 observation.

1

• ctry: an object SpatialPolygonsDataFrame as is defined in package sp that represents the
administrative boundary of Germany. The data slot contains 6 variables as attributes of 1 ob-
servation.

• node: an object SpatialPointsDataFrame as is defined in package sp that represents the nodes
of the ECRINS river network of the river Weser basin. The data slot contains 13 variables as
attributes of 3882 observations.

• rAller an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Aller, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 88 observations.

• rDiemel an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Diemel, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 39 observations.

• rFulda an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Fulda, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 82 observations.

• rHunte an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Hunte, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 34 observations.

• river an object SpatialLinesDataFrame as is defined in package sp that represents the ECRINS
river network of the river Weser basin. The data slot contains 52 variables as attributes of 3874
observations.

• rWerra an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Werra, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 120 observations.

• rWeser an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Weser. The data slot contains 74 variables as attributes of 104 observations.

• rWiumme an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Wiumme, a major tributary of the river Weser. The data slot contains 74 variables
as attributes of 18 observations.

• station an object SpatialPoints as is defined in package sp that represents a point of interest
for which the watershed will be aggregated an ordered. Could be a point with the coordinates
of a measurement station.

• subbasin an object SpatialPolygonsDataFrame as is defined in package sp that represents the
subbasins of the tributaries of the river Weser. The data slot contains 4 variables as attributes
of 4 observations.

2

• zhyd an object SpatialPolygonsDataFrame as is defined in package sp that contains the primary
hydrological units of the river Weser basin accordingly with ECRINS. The data slot contains 50
variables as attributes and 915 observations.

Some examples for visualising the dataset are presented as follows:

library(Watersheds)

data(WatershedsData)

ls() str(WatershedsData) str(WatershedsData['basin'])

plotting river Weser basin

plot(WatershedsData["ctry"][[1]], col = "gray60")

plot(WatershedsData["basin"][[1]], col = "gray30", add = TRUE)

title("River Weser basin, Germany")

River Weser basin, Germany

3

plotting subbasins river Weser basin

plot(WatershedsData["basin"][[1]])

plot(WatershedsData["subbasin"][[1]], col = "gray60", add = TRUE)

plot(WatershedsData["rWeser"][[1]], col = "blue", lwd = 2, add = TRUE)

plot(WatershedsData["rAller"][[1]], col = "blue", lwd = 1, add = TRUE)

plot(WatershedsData["rDiemel"][[1]], col = "blue", lwd = 1, add = TRUE)

plot(WatershedsData["rFulda"][[1]], col = "blue", lwd = 1, add = TRUE)

plot(WatershedsData["rHunte"][[1]], col = "blue", lwd = 1, add = TRUE)

plot(WatershedsData["rWerra"][[1]], col = "blue", lwd = 1, add = TRUE)

plot(WatershedsData["rWiumme"][[1]], col = "blue", lwd = 1, add = TRUE)

title("Subbasins River Weser")

Subbasins River Weser

plotting primary zhyd watersheds and drainage network inside river Werra

subbasin subsetting the river Werra subbasin

4

id = list(gIntersects(WatershedsData["rWerra"][[1]], WatershedsData["subbasin"][[1]],

byid = TRUE))

subbasin_rWerra = SpDF_Subset(id, WatershedsData["subbasin"][[1]])

subsetting the river Werra zhyd watersheds

id = list(gIntersects(WatershedsData["rWerra"][[1]], WatershedsData["zhyd"][[1]],

byid = TRUE))

zhyd_rWerra = SpDF_Subset(id, WatershedsData["zhyd"][[1]])

plot(subbasin_rWerra, col = "grey60")

plot(zhyd_rWerra, col = "grey50", add = TRUE)

plot(WatershedsData["rWerra"][[1]], col = "blue", lwd = 1, add = TRUE)

title("Subbasin River Weser and primary zhyd watersheds")

Subbasin River Weser and primary zhyd watersheds

5

subsetting the river Werra river drainage watersheds

id = list(gIntersects(subbasin_rWerra, WatershedsData["river"][[1]], byid = TRUE))

river_rWerra = SpDF_Subset(id, WatershedsData["river"][[1]])

plot(subbasin_rWerra, col = "grey60")

plot(WatershedsData["rWerra"][[1]], col = "blue", lwd = 3, add = TRUE)

plot(river_rWerra, col = "blue1", add = TRUE)

title("Subbasin River Weser and drainage network")

Subbasin River Weser and drainage network

3 The Watersheds objects

A class "Watershed" for representing "Watershed" objects.

6

station1 = WatershedsData["station"][[1]]

subbasin1 = WatershedsData["subbasin"][[1]]

zhyd1 = WatershedsData["zhyd"][[1]]

river1 = WatershedsData["river"][[1]]

node1 = WatershedsData["node"][[1]]

station1 = SpatialPoints(station1, proj4string = slot(subbasin1, "proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

class(watershed)

[1] "Watershed"

attr(,"package")

[1] "Watersheds"

4 The Watersheds.Order method

The Method for function Watershed.Order allows definition of the properties of the current zhyd

watershed over Watershed objects.
The function takes the object of class Watershed and identifies the subbasin that contains the

current station (class SpatialPoints) and subsets the zhyd object to subbasin and extract the
current zhy object that contains station. Posteriorly, identifies the inlet and outlet stretches and
probable inlet and outlet nodes of the zhyd. Then, runs the functions Watershed. ,IOR1, IOR2,

IOR3, or IOR4 for determining the actual inlet and outlet nodes. Finally, the method executes the S4
method Watershed.Tributary for defining tributary nodes and tributary catchments of the current
zhyd watershed.

station1 = WatershedsData["station"][[1]]

subbasin1 = WatershedsData["subbasin"][[1]]

zhyd1 = WatershedsData["zhyd"][[1]]

river1 = WatershedsData["river"][[1]]

node1 = WatershedsData["node"][[1]]

station1 = SpatialPoints(coords = cbind(4328448.74, 3118576.86), proj4string = slot(subbasin1,

"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)

[1] "length(riverIO) == 4"

c1 = a[[1]]

c1_inlet = a[[2]]

c1_outlet = a[[3]]

c2 = a[[4]]

c3 = a[[5]]

node_trib = a[[6]]

sb1 = a[[7]]

riverIO = a[[8]]

nodeIO = a[[9]]

c1_river = a[[10]]

7

c1_node = a[[11]]

bbox1 = slot(c1, "bbox")

bbox = matrix(0, 2, 2)

bbox[, 1] = bbox1[, 1] * 0.998

bbox[, 2] = bbox1[, 2] * 1.002

plot(c1, xlim = bbox[1,], ylim = bbox[2,], col = "gray50")

plot(c2, col = "gray75", add = TRUE)

plot(c3, col = "gray85", add = TRUE)

plot(slot(watershed, "station"), pch = 24, bg = "blue", add = TRUE)

plot.PolyLineAttribute(c1, "order", 450, 0.8)

plot.PolyLineAttribute(c2, "order", 450, 0.8)

plot.PolyLineAttribute(c3, "order", 450, 0.8)

plot(c1_river, col = "blue", add = TRUE)

plot(c1_node, pch = 21, bg = "blue", cex = 0.5, add = TRUE)

plot(nodeIO, pch = 21, bg = "blue", cex = 0.5, add = TRUE)

plot(c1_inlet, pch = 21, bg = "green", add = TRUE)

plot(c1_outlet, pch = 21, bg = "red", add = TRUE)

plot.PointAttribute(nodeIO, "ELEV", 600, 0.7)

title(main = "Current zhyd watershed (1)", sub = "First order tributary watersheds (1.1, 1.2)")

8

1

1.1

1.2

● ●

● ●

●
●

● ● ●

●

●

● ●

●
●

●

●

●

200

154156

162162

165

Current zhyd watershed (1)

First order tributary watersheds (1.1, 1.2)

5 The Watersheds.Order2 method

S4 Method for function Watershed.Order2. Definition of the tributary zhyd watersheds of the current
zhyd watershed.

The method takes the objec of class Watershed when object node trib is length 2. The method
identifies the zhyd watershed that contaions the current station (class SpatialPoints) and apply the
method Watershed.Order on each point of node trib returning a list of objects Watershed.Order.
The computation is done via parallel processes for optimizing and take advance of multicore function-
alities.

station1 = SpatialPoints(coords = cbind(4328650, 3174450), proj4string = slot(subbasin1,

"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

9

a = Watershed.Order(watershed)

[1] "end WatershedIO_R3"

[1] "length(riverIO) == 3"

c1 = a[[1]]

node_trib = a[[6]]

c1_river = a[[10]]

watershed2 = new("Watershed", station = node_trib, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = c1, node = node1)

c23 = Watershed.Order2(watershed2)

c2 = c23[[1]]

c3 = c23[[2]]

c2.0 = c2[[1]]

c2_inlet = c2[[2]]

c2_outlet = c2[[3]]

c2.1 = c2[[4]]

c2.2 = c2[[5]]

c2_node_trib = c2[[6]]

c2_sb1 = c2[[7]]

c2_riverIO = c2[[8]]

c2_nodeIO = c2[[9]]

c2_river = c2[[10]]

c2_node = c2[[11]]

c3.0 = c3[[1]]

c3_inlet = c3[[2]]

c3_outlet = c3[[3]]

c3.1 = c3[[4]]

c3.2 = c3[[5]]

c3_node_trib = c3[[6]]

c3_sb1 = c3[[7]]

c3_riverIO = c3[[8]]

c3_nodeIO = c3[[9]]

c3_river = c3[[10]]

c3_node = c3[[11]]

subsetting river networks

id = list(gIntersects(c2.1, WatershedsData$river, byid = TRUE))

c21_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c2.2, WatershedsData$river, byid = TRUE))

c22_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c3.1, WatershedsData$river, byid = TRUE))

c31_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c3.2, WatershedsData$river, byid = TRUE))

c32_river = SpDF_Subset(id, WatershedsData$river)

plots

10

bbox1 = slot(c3.2, "bbox")

bbox = matrix(0, 2, 2)

bbox[, 1] = bbox1[, 1] * 0.995

bbox[, 2] = bbox1[, 2] * 1.005

plot(c1, col = "gray50", xlim = bbox[1,], ylim = bbox[2,])

plot(c2.0, col = "gray95", add = TRUE)

plot(c3.0, col = "gray79", add = TRUE)

plot(c2.1, col = "gray78", add = TRUE)

plot(c2.2, col = "gray85", add = TRUE)

plot(c3.1, col = "gray53", add = TRUE)

plot(c3.2, col = "gray63", add = TRUE)

plot(c1_river, col = "blue", add = TRUE)

plot(c2_river, col = "blue", add = TRUE)

plot(c3_river, col = "blue", add = TRUE)

plot(c21_river, col = "blue", add = TRUE)

plot(c22_river, col = "blue", add = TRUE)

plot(c31_river, col = "blue", add = TRUE)

plot(c32_river, col = "blue", add = TRUE)

title(main = "Current zhyd watershed and \n 1st and 2nd order tributary watersheds")

11

Current zhyd watershed and
 1st and 2nd order tributary watersheds

6 The Watersheds.IOR1 function

The Watersheds.IOR1 function means Watershed inlet and outlet nodes: case 1. The function deter-
mines the inlet and outlet nodes for zhyd watershed objects. This case 1 is for those watersheds that
its river inlet and outlet object is length 1 (length(riverIO)=1).

station1 = SpatialPoints(coords = cbind(4232972, 3327634), proj4string = slot(subbasin1,

"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)

[1] "length(riverIO) == 1"

12

c1 = a[[1]]

nodeIO = a[[9]]

c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)

dist = gDistance(nodeIO, boundary, byid = TRUE)

a = Watershed.IOR1(x = nodeIO, dist = dist)

c1_inlet = a["inlet"][[1]]

c1_inlet

[1] 0

c1_outlet = a["outlet"][[1]]

c1_outlet

coordinates OBJECTID ID WSO_ID SOURCE LEN_TOM NUM_SEG ELEV

143 (4234350, 3330950) 25485 587506 7 N 57980 9 2

WINDOW WXSOID NodID Is_2Keep LENK_FRS LENK_TOM

143 2000 <NA> Y000587506 -1 0 57.98

plot(c1, col = "gray50")

plot(station1, pch = 24, bg = "blue", add = TRUE)

plot(c1_river, col = "blue", add = TRUE)

plot(c1_outlet, pch = 21, bg = "red", add = TRUE)

plot.PointAttribute(c1_outlet, "ELEV", 700, 0.8)

title(main = "Watershed outlet, case I")

13

●
2

Watershed outlet, case I

7 The Watersheds.IOR2 function

The Watersheds.IOR1 function means Watershed inlet and outlet nodes: case 2. The function deter-
mines the inlet and outlet nodes for zhyd watershed objects. This case 2 is for those watersheds that
its river inlet and outlet object is length 2 (length(riverIO)=2).

station1 = SpatialPoints(coords = cbind(4330341.36, 3284797.06), proj4string = slot(subbasin1,

"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)

[1] "length(riverIO) == 2"

14

c1 = a[[1]]

nodeIO = a[[9]]

c1_river = a[[10]]

c1_node = a[[11]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)

dist = gDistance(nodeIO, boundary, byid = TRUE)

a = Watershed.IOR2(x = nodeIO, dist = dist, node = c1_node)

c1_inlet = a["inlet"][[1]]

c1_inlet

[1] 0

c1_outlet = a["outlet"][[1]]

c1_outlet

coordinates OBJECTID ID WSO_ID SOURCE LEN_TOM NUM_SEG ELEV

508 (4322650, 3280950) 29656 599477 7 N 210109 57 41

WINDOW WXSOID NodID Is_2Keep LENK_FRS LENK_TOM

508 2000 <NA> Y000599477 -1 0 210.1

plot(c1, col = "gray60")

plot(station1, pch = 24, bg = "blue", add = TRUE)

plot(c1_river, col = "blue", add = TRUE)

plot(c1_outlet, pch = 21, bg = "red", add = TRUE)

plot.PointAttribute(c1_outlet, "ELEV", 700, 0.8)

title(main = "Watershed outlet, case II")

15

●

41

Watershed outlet, case II

8 The Watersheds.IOR3 function

The Watersheds.IOR1 function means: Watershed inlet and outlet nodes: case 3. The function
determines the inlet and outlet nodes for zhyd watershed objects. This case 3 is for those watersheds
that its river inlet and outlet object is length 3 (length(riverIO)=3).

station1 = SpatialPoints(coords = cbind(4217199.42, 3353511.83), proj4string = slot(subbasin1,

"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)

[1] "end WatershedIO_R3"

[1] "length(riverIO) == 3"

16

c1 = a[[1]]

riverIO = a[[8]]

nodeIO = a[[9]]

c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)

dist = gDistance(nodeIO, boundary, byid = TRUE)

a = Watershed.IOR3(x = nodeIO, y = riverIO, dist = dist)

[1] "end WatershedIO_R3"

c1_inlet = a["inlet"][[1]]

c1_inlet

coordinates OBJECTID ID WSO_ID SOURCE LEN_TOM NUM_SEG ELEV

122 (4204050, 3338550) 24935 585844 7 N 53043 5 0

WINDOW WXSOID NodID Is_2Keep LENK_FRS LENK_TOM

122 2000 <NA> Y000585844 -1 0 53.04

c1_outlet = a["outlet"][[1]]

c1_outlet

coordinates OBJECTID ID WSO_ID SOURCE LEN_TOM NUM_SEG ELEV

108 (4217550, 3345250) 24419 584384 7 N 35826 4 0

WINDOW WXSOID NodID Is_2Keep LENK_FRS LENK_TOM

108 2000 <NA> Y000584384 -1 0 35.83

plot(c1, col = "gray60")

plot(station1, pch = 24, bg = "blue", add = TRUE)

plot(c1_river, col = "blue", add = TRUE)

plot(c1_outlet, pch = 21, bg = "red", add = TRUE)

plot(c1_inlet, pch = 21, bg = "green", add = TRUE)

plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)

plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

title(main = "Watershed outlet and inlet, case III")

17

●

●

0

0

Watershed outlet and inlet, case III

9 The Watersheds.IOR4 function

The Watersheds.IOR1 function means Watershed inlet and outlet nodes: case 4. The function deter-
mines the inlet and outlet nodes for zhyd watershed objects. This case 4 is for those watersheds that
its river inlet and outlet object is length 4 (length(riverIO)=4).

station1 = SpatialPoints(coords = cbind(4357947, 3284525), proj4string = slot(subbasin1,

"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)

[1] "length(riverIO) == 4"

18

c1 = a[[1]]

riverIO = a[[8]]

nodeIO = a[[9]]

c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)

dist = gDistance(nodeIO, boundary, byid = TRUE)

a = Watershed.IOR4(x = nodeIO, y = riverIO, dist = dist)

c1_inlet = a["inlet"][[1]]

c1_inlet

coordinates OBJECTID ID WSO_ID SOURCE LEN_TOM NUM_SEG ELEV

591 (4362250, 3273550) 30177 601229 7 N 273785 76 52

WINDOW WXSOID NodID Is_2Keep LENK_FRS LENK_TOM

591 2000 <NA> Y000601229 -1 0 273.8

c1_outlet = a["outlet"][[1]]

c1_outlet

coordinates OBJECTID ID WSO_ID SOURCE LEN_TOM NUM_SEG ELEV

672 (4358850, 3264550) 30739 603332 7 N 261866 74 55

WINDOW WXSOID NodID Is_2Keep LENK_FRS LENK_TOM

672 2000 <NA> Y000603332 -1 0 261.9

plot(c1, col = "gray60")

plot(station1, pch = 24, bg = "blue", add = TRUE)

plot(c1_river, col = "blue", add = TRUE)

plot(c1_outlet, pch = 21, bg = "red", add = TRUE)

plot(c1_inlet, pch = 21, bg = "green", add = TRUE)

plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)

plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

title(main = "Watershed outlet and inlet, case IV")

19

●

●

55

52

Watershed outlet and inlet, case IV

References

European Environment Agency - EAA. (2012). EEA catchments and rivers network system, ECRINS v1.1. rationales,
building and improving for widening uses to Water Accounts and WISE applications (EEA Technical report No.
7/2012). (Luxembourg: Publications Office of the European Union)

Ihaka, R., & Gentleman, R. (1996). R: a languague for data analysis and graphics. Journal of Computational and
Graphical Statistics, 5 , 299-314.

Pebesma, E., & Bivand, R. (2005-2012, May). Package ”sp”: classes and methods for spatial data (.9-99 ed.) [Computer
software manual].

R Development Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria.
Retrieved from http://www.R-project.org/

20

