bsvars: Bayesian Estimation of Structural Vector Autoregressive Models
Efficient algorithms for Bayesian estimation of Structural Vector Autoregressive (SVAR) models via Markov chain Monte Carlo methods. A wide range of SVAR models is considered, including homo- and heteroskedastic specifications and those with non-normal structural shocks. The heteroskedastic SVAR model setup is similar as in Woźniak & Droumaguet (2015) <doi:10.13140/RG.2.2.19492.55687> and Lütkepohl & Woźniak (2020) <doi:10.1016/j.jedc.2020.103862>. The sampler of the structural matrix follows Waggoner & Zha (2003) <doi:10.1016/S0165-1889(02)00168-9>, whereas that for autoregressive parameters follows Chan, Koop, Yu (2022) <https://www.joshuachan.org/papers/OISV.pdf>. The specification of Markov switching heteroskedasticity is inspired by Song & Woźniak (2021) <doi:10.1093/acrefore/9780190625979.013.174>, and that of Stochastic Volatility model by Kastner & Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002>.
Version: |
2.0.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
Rcpp (≥ 1.0.7), RcppProgress (≥ 0.1), RcppTN, GIGrvg, R6, stochvol |
LinkingTo: |
Rcpp, RcppProgress, RcppArmadillo, RcppTN |
Suggests: |
tinytest |
Published: |
2023-10-24 |
Author: |
Tomasz Woźniak
[aut, cre] |
Maintainer: |
Tomasz Woźniak <wozniak.tom at pm.me> |
BugReports: |
https://github.com/bsvars/bsvars/issues |
License: |
GPL (≥ 3) |
NeedsCompilation: |
yes |
Citation: |
bsvars citation info |
Materials: |
README NEWS |
In views: |
Bayesian, TimeSeries |
CRAN checks: |
bsvars results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=bsvars
to link to this page.