In cheapr, ‘cheap’ means fast and memory-efficient, and that’s exactly the philosophy that cheapr aims to follow.
You can install the development version of cheapr like so:
::install_github("NicChr/cheapr") remotes
num_na()
is a useful function to efficiently return the
number of NA
values and can be used in a variety of
problems.
Here is an example of a minor optimisation we can add to
vctrs::vec_fill_missing
to return x if x has zero or only
NA
values.
library(cheapr)
library(vctrs)
library(bench)
<- function(x){
na_locf # num_na is recursive so we compare it to unlisted length
if (num_na(x) %in% c(0, unlisted_length(x))){
xelse {
} vec_fill_missing(x, direction = "down")
}
}<- rep(NA, 10^6)
x identical(x, na_locf(x))
#> [1] TRUE
mark(na_locf(x), vec_fill_missing(x, direction = "down"))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "na_locf(x)" 983.1µs 1.04ms 966. 0B 0
#> 2 "vec_fill_missing(x, direction =… 4.59ms 5.14ms 191. 11.4MB 63.6
mark(na_locf(x), vec_fill_missing(x, direction = "down"))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:> <dbl> <bch:byt> <dbl>
#> 1 "na_locf(x)" 983.5µs 1.04ms 964. 0B 0
#> 2 "vec_fill_missing(x, direction =… 3.82ms 5.05ms 205. 11.4MB 150.
All the NA
handling functions in cheapr can make use of
multiple cores on your machine using openMP.
# 1 core by default
mark(num_na(x), sum(is.na(x)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 num_na(x) 980.2µs 1.04ms 958. 0B 0
#> 2 sum(is.na(x)) 1.54ms 1.72ms 555. 3.81MB 51.2
# 4 cores
options(cheapr.cores = 4)
mark(num_na(x), sum(is.na(x)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 num_na(x) 266.2µs 328.55µs 2859. 0B 0
#> 2 sum(is.na(x)) 1.54ms 1.72ms 557. 3.81MB 51.4
<- matrix(x, ncol = 10^3)
m # Number of NA values by row
mark(row_na_counts(m),
rowSums(is.na(m)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 row_na_counts(m) 1.18ms 2.63ms 383. 16.94KB 0
#> 2 rowSums(is.na(m)) 2.62ms 3.57ms 280. 3.82MB 29.0
# Number of NA values by col
mark(col_na_counts(m),
colSums(is.na(m)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 col_na_counts(m) 766.3µs 950.8µs 1070. 17.77KB 0
#> 2 colSums(is.na(m)) 1.81ms 2.77ms 364. 3.82MB 35.9
is_na
is a multi-threaded alternative to
is.na
<- rnorm(10^6)
x sample.int(10^6, 10^5)] <- NA
x[mark(is.na(x), is_na(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 is.na(x) 731µs 1.82ms 595. 3.81MB 99.7
#> 2 is_na(x) 495µs 868.3µs 1146. 3.82MB 112.
### posixlt method is much faster
<- as.POSIXlt(seq.int(0, length.out = 10^6, by = 3600),
hours tz = "UTC")
sample.int(10^6, 10^5)] <- NA
hours[
mark(is.na(hours), is_na(hours))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 is.na(hours) 1.21s 1.21s 0.826 61MB 0.826
#> 2 is_na(hours) 6.31ms 7.85ms 109. 13.8MB 11.9
It differs in 2 regards:
NA
when either that
element is an NA
value or it is a list containing only
NA
values.is_na
returns a logical vector where
TRUE
defines an empty row of only NA
values.# List example
is.na(list(NA, list(NA, NA), 10))
#> [1] TRUE FALSE FALSE
is_na(list(NA, list(NA, NA), 10))
#> [1] TRUE TRUE FALSE
# Data frame example
<- data.frame(x = c(1, NA, 3),
df y = c(NA, NA, NA))
df#> x y
#> 1 1 NA
#> 2 NA NA
#> 3 3 NA
is_na(df)
#> [1] FALSE TRUE FALSE
is_na(df)
#> [1] FALSE TRUE FALSE
# The below identity should hold
identical(is_na(df), row_na_counts(df) == ncol(df))
#> [1] TRUE
is_na
and all the NA
handling functions
fall back on calling is.na()
if no suitable method is
found. This means that custom objects like vctrs rcrds and more are
supported.
overview
Inspired by the excellent skimr package, overview()
is a
cheaper alternative designed for larger data.
<- data.frame(
df x = sample.int(100, 10^7, TRUE),
y = factor_(sample(LETTERS, 10^7, TRUE)),
z = rnorm(10^7)
)overview(df, hist = TRUE)
#> obs: 10000000
#> cols: 3
#>
#> ----- Numeric -----
#> col class n_missing p_complete n_unique mean p0 p25 p50 p75 p100
#> 1 x integer 0 1 100 50.51 1 25 51 75 100
#> 2 z numeric 0 1 10000000 0 -5.18 -0.68 0 0.67 5.08
#> iqr sd hist
#> 1 50 28.87 ▇▇▇▇▇
#> 2 1.35 1 ▁▂▇▂▁
#>
#> ----- Categorical -----
#> col class n_missing p_complete n_unique n_levels min max
#> 1 y factor 0 1 26 26 A Z
mark(overview(df))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 overview(df) 1.07s 1.07s 0.935 76.3MB 0.935
sset
sset(iris, 1:5)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
sset(iris, 1:5, j = "Species")
#> Species
#> 1 setosa
#> 2 setosa
#> 3 setosa
#> 4 setosa
#> 5 setosa
# sset always returns a data frame when input is a data frame
sset(iris, 1, 1) # data frame
#> Sepal.Length
#> 1 5.1
1, 1] # not a data frame
iris[#> [1] 5.1
<- sample.int(10^6, 10^4, TRUE)
x <- sample.int(10^6, 10^4, TRUE)
y mark(sset(x, x %in_% y), sset(x, x %in% y), x[x %in% y])
#> # A tibble: 3 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sset(x, x %in_% y) 79.6µs 120µs 8445. 88.3KB 2.08
#> 2 sset(x, x %in% y) 150.3µs 236µs 4263. 285.4KB 6.81
#> 3 x[x %in% y] 132.4µs 212µs 4665. 324.5KB 6.90
sset
uses an internal range-based subset when
i
is an ALTREP integer sequence of the form m:n.
mark(sset(df, 0:10^5), df[0:10^5, , drop = FALSE])
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sset(df, 0:10^5) 171.3µs 544.7µs 1857. 1.53MB 14.3
#> 2 df[0:10^5, , drop = FALSE] 6.36ms 7.28ms 137. 4.83MB 2.08
It also accepts negative indexes
mark(sset(df, -10^4:0),
-10^4:0, , drop = FALSE],
df[check = FALSE) # The only difference is the row names
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sset(df, -10^4:0) 50.4ms 62.6ms 12.5 152MB 8.95
#> 2 df[-10^4:0, , drop = FALSE] 840.1ms 840.1ms 1.19 776MB 5.95
The biggest difference between sset
and [
is the way logical vectors are handled. The two main differences when
i
is a logical vector are:
NA
values are ignored, only the locations of
TRUE
values are used.i
must be the same length as x
and is not
recycled.# Examples with NAs
<- c(1, 5, NA, NA, -5)
x > 0]
x[x #> [1] 1 5 NA NA
sset(x, x > 0)
#> [1] 1 5
# Example with length(i) < length(x)
sset(x, TRUE)
#> Error in check_length(i, length(x)): i must have length 5
# This is equivalent
TRUE]
x[#> [1] 1 5 NA NA -5
# to..
sset(x)
#> [1] 1 5 NA NA -5
lag_()
set.seed(37)
lag_(1:10, 3) # Lag(3)
#> [1] NA NA NA 1 2 3 4 5 6 7
lag_(1:10, -3) # Lead(3)
#> [1] 4 5 6 7 8 9 10 NA NA NA
# Using an example from data.table
library(data.table)
<- data.table(year=2010:2014, v1=runif(5), v2=1:5, v3=letters[1:5])
dt
# Similar to data.table::shift()
lag_(dt, 1) # Lag
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
lag_(dt, -1) # Lead
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2011 0.07883715 2 b
#> 2: 2012 0.64879698 3 c
#> 3: 2013 0.49685336 4 d
#> 4: 2014 0.71878731 5 e
#> 5: NA NA NA <NA>
With lag_
we can update variables by reference,
including entire data frames
# At the moment, shift() cannot do this
lag_(dt, set = TRUE)
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
# Was updated by reference
dt #> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
lag2_
is a more generalised variant that supports
vectors of lags, custom ordering and run lengths.
lag2_(dt, order = 5:1) # Reverse order lag (same as lead)
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2010 0.54964085 1 a
#> 2: 2011 0.07883715 2 b
#> 3: 2012 0.64879698 3 c
#> 4: 2013 0.49685336 4 d
#> 5: NA NA NA <NA>
lag2_(dt, -1) # Same as above
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2010 0.54964085 1 a
#> 2: 2011 0.07883715 2 b
#> 3: 2012 0.64879698 3 c
#> 4: 2013 0.49685336 4 d
#> 5: NA NA NA <NA>
lag2_(dt, c(1, -1)) # Alternating lead/lag
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: NA NA NA <NA>
#> 2: 2011 0.07883715 2 b
#> 3: 2010 0.54964085 1 a
#> 4: 2013 0.49685336 4 d
#> 5: 2012 0.64879698 3 c
lag2_(dt, c(-1, 0, 0, 0, 0)) # Lead e.g. only first row
#> year v1 v2 v3
#> <int> <num> <int> <char>
#> 1: 2010 0.54964085 1 a
#> 2: 2010 0.54964085 1 a
#> 3: 2011 0.07883715 2 b
#> 4: 2012 0.64879698 3 c
#> 5: 2013 0.49685336 4 d
gcd2(5, 25)
#> [1] 5
scm2(5, 6)
#> [1] 30
gcd(seq(5, 25, by = 5))
#> [1] 5
scm(seq(5, 25, by = 5))
#> [1] 300
<- seq(1L, 1000000L, 1L)
x mark(gcd(x))
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 gcd(x) 1.3µs 1.4µs 658389. 0B 0
<- seq(0, 10^6, 0.5)
x mark(gcd(x))
#> # A tibble: 1 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 gcd(x) 46.6ms 47.4ms 21.0 0B 0
As an example, to create 3 sequences with different increments,
the usual approach might be to use lapply to loop through the increment
values together with seq()
# Base R
<- c(1, 0.5, 0.1)
increments <- 1
start <- 5
end unlist(lapply(increments, \(x) seq(start, end, x)))
#> [1] 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4
#> [20] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
#> [39] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
In cheapr you can use seq_()
which accepts vector
arguments.
seq_(start, end, increments)
#> [1] 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4
#> [20] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3
#> [39] 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
Use add_id = TRUE
to label the individual sequences.
seq_(start, end, increments, add_id = TRUE)
#> 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
#> 1.0 2.0 3.0 4.0 5.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.0 1.1 1.2 1.3 1.4 1.5
#> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
#> 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#> 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0
If you know the sizes of your sequences beforehand, use
sequence_()
<- c(3, 5, 10)
seq_sizes sequence_(seq_sizes, from = 0, by = 1/3, add_id = TRUE) |>
enframe_()
#> # A tibble: 18 × 2
#> name value
#> <chr> <dbl>
#> 1 1 0
#> 2 1 0.333
#> 3 1 0.667
#> 4 2 0
#> 5 2 0.333
#> 6 2 0.667
#> 7 2 1
#> 8 2 1.33
#> 9 3 0
#> 10 3 0.333
#> 11 3 0.667
#> 12 3 1
#> 13 3 1.33
#> 14 3 1.67
#> 15 3 2
#> 16 3 2.33
#> 17 3 2.67
#> 18 3 3
You can also calculate the sequence sizes using
seq_size()
seq_size(start, end, increments)
#> [1] 5 9 41
# which()
<- rep(TRUE, 10^6)
x mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 1.99ms 3.44ms 290. 3.81MB 2.09
#> 2 base_which 677.3µs 2.73ms 382. 7.63MB 6.98
<- rep(FALSE, 10^6)
x mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 227µs 286µs 3215. 0B 0
#> 2 base_which 453µs 482µs 2070. 3.81MB 17.6
<- c(rep(TRUE, 5e05), rep(FALSE, 1e06))
x mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 1.21ms 2.04ms 484. 1.91MB 2.07
#> 2 base_which 782µs 1.79ms 562. 7.63MB 9.36
<- c(rep(FALSE, 5e05), rep(TRUE, 1e06))
x mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 2.94ms 4.45ms 228. 3.81MB 2.07
#> 2 base_which 923.7µs 3ms 334. 9.54MB 6.82
<- sample(c(TRUE, FALSE), 10^6, TRUE)
x sample.int(10^6, 10^4)] <- NA
x[mark(cheapr_which = which_(x),
base_which = which(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_which 1.95ms 2.58ms 385. 1.89MB 2.09
#> 2 base_which 3.18ms 4.09ms 247. 5.7MB 4.33
# factor()
<- sample(seq(-10^3, 10^3, 0.01))
x <- do.call(paste0, expand.grid(letters, letters, letters, letters))
y mark(cheapr_factor = factor_(x),
base_factor = factor(x))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 9.38ms 9.71ms 102. 4.59MB 0
#> 2 base_factor 600.24ms 600.24ms 1.67 27.84MB 0
mark(cheapr_factor = factor_(x, order = FALSE),
base_factor = factor(x, levels = unique(x)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 4.39ms 4.91ms 206. 1.53MB 0
#> 2 base_factor 940.57ms 940.57ms 1.06 22.79MB 0
mark(cheapr_factor = factor_(y),
base_factor = factor(y))
#> Warning: Some expressions had a GC in every iteration; so filtering is
#> disabled.
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 201.72ms 201.8ms 4.92 5.23MB 0
#> 2 base_factor 3.04s 3.04s 0.329 54.35MB 0.329
mark(cheapr_factor = factor_(y, order = FALSE),
base_factor = factor(y, levels = unique(y)))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_factor 4.99ms 6ms 168. 3.49MB 0
#> 2 base_factor 52.39ms 56.3ms 18.0 39.89MB 2.25
# intersect() & setdiff()
<- sample.int(10^6, 10^5, TRUE)
x <- sample.int(10^6, 10^5, TRUE)
y mark(cheapr_intersect = intersect_(x, y, dups = FALSE),
base_intersect = intersect(x, y))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_intersect 2.76ms 2.93ms 338. 1.18MB 0
#> 2 base_intersect 5.04ms 5.45ms 181. 5.16MB 2.24
mark(cheapr_setdiff = setdiff_(x, y, dups = FALSE),
base_setdiff = setdiff(x, y))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_setdiff 3ms 3.17ms 312. 1.76MB 0
#> 2 base_setdiff 5.22ms 5.42ms 183. 5.71MB 2.21
%in_%
and %!in_%
mark(cheapr = x %in_% y,
base = x %in% y)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr 1.77ms 1.88ms 525. 781.34KB 0
#> 2 base 2.62ms 3.13ms 320. 2.53MB 2.21
mark(cheapr = x %!in_% y,
base = !x %in% y)
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr 1.7ms 1.9ms 524. 787.84KB 0
#> 2 base 2.69ms 3.14ms 317. 2.91MB 2.20
# cut.default()
<- rnorm(10^7)
x <- seq(0, max(x), 0.2)
b mark(cheapr_cut = cut_numeric(x, b),
base_cut = cut(x, b))
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 cheapr_cut 144ms 144ms 6.92 38.1MB 2.31
#> 2 base_cut 474ms 474ms 2.11 267.1MB 2.11