Package 'chyper'

October 12, 2022

Type Package

Title Functions for Conditional Hypergeometric Distributions

Version 0.3.1

Author William Nickols

Maintainer William Nickols <willnickols@college.harvard.edu>

Description An implementation of the probability mass function, cumulative density function, quantile function, random number generator, maximum likelihood estimator, and p-value generator from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-08-13 09:20:05 UTC

R topics documented:

dchyper	2
mleM	2
mleN	3
mleS	4
pchyper	5
pvalchyper	
qchyper	6
rchyper	7

8

Index

dchyper

Description

Calculates the PMF of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

dchyper(k, s, n, m, verbose = T)

Arguments

k	an integer or vector of integers representing the overlap size
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The probability of sampling k of the same items in all samples

Examples

```
dchyper(c(3,5), 10, c(12,13,14), c(7,8,9))
```

mleM

Maximum likelihood estimator for sample size in conditional hypergeometric distributions

Description

Calculates the MLE of a sample size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
mleM(population, k, s, n, m, verbose = T)
```

mleN

Arguments

population	the index of the unknown sample size
k	the observed overlaps
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes where the value of the un- known sample size should be any integer as a placeholder
verbose	T/F should intermediate messages be printed?

Value

The maximum likelihood estimator of the unknown sample size

Examples

```
mleM(1, c(0,0,1,1,0,2,0), 8, c(12,13,14), c(0,8,9))
```

mleN

Maximum likelihood estimator for a unique population size in conditional hypergeometric distributions

Description

Calculates the MLE of a unique population size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

mleN(population, k, s, n, m, verbose = T)

Arguments

population	the index of the unique population to estimate
k	the observed overlaps
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population where the value of the unknown population size should be any integer as a place- holder
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The maximum likelihood estimator of the unknown unique population size

Examples

mleN(1, c(0,0,1,1,0,2,0), 8, c(0,13,14), c(7,8,9))

Maximum likelihood estimator for overlap size in conditional hypergeometric distributions

Description

Calculates the MLE of the overlap size in a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

mleS(k, n, m, verbose = T)

Arguments

k	the observed overlaps
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The maximum likelihood estimator of the intersecting population size

Examples

mleS(c(0,0,1,1,0,2,0), c(12,13,14), c(7,8,9))

pchyper

Cumulative density function for conditional hypergeometric distributions

Description

Calculates the CDF of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

pchyper(k, s, n, m, verbose = T)

Arguments

k	an integer or vector of integers representing the overlap size
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The probability of sampling k or less of the same items in all samples

Examples

```
pchyper(c(3,5), 10, c(12,13,14), c(7,8,9))
```

pvalchyper

P-values from a conditional hypergeometric distribution

Description

Calculates p-values from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

```
pvalchyper(k, s, n, m, tail = "upper", verbose = T)
```

Arguments

k	an integer or vector of integers representing the overlap size
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
tail	whether the p-value should be from the upper or lower tail (options: "upper", "lower")
verbose	T/F should intermediate messages be printed?

Value

The probability of getting the k or more (or less if tail="lower") overlaps by chance from the conditional hypergeometric distribution specified by the parameters

Examples

```
pvalchyper(c(1,2), 8, c(12,13,14), c(7,8,9), "upper")
```

qchyper

Quantile function for conditional hypergeometric distributions

Description

Calculates the quantile function of a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

qchyper(p, s, n, m, verbose = T)

Arguments

р	the desired quantile or quantiles
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

The minimum integer (or integers for a vector input) such that the input probability is less than or equal to the probability of sampling that many of the same items in all samples.

rchyper

Examples

qchyper(c(0,0.9,1), 10, c(12,13,14), c(7,8,9))

rchyper	Random number generator for conditional hypergeometric distribu-
	tions

Description

Generates random numbers from a conditional hypergeometric distribution: the distribution of how many items are in the overlap of all samples when samples of arbitrary size are each taken without replacement from populations of arbitrary size.

Usage

rchyper(size, s, n, m, verbose = T)

Arguments

size	the number of random numbers to generate
S	an integer representing the size of the intersecting population
n	a vector of integers representing the sizes of each non-intersecting population
m	a vector of integers representing the sample sizes
verbose	T/F should intermediate messages be printed?

Value

A vector of random numbers generated from the PMF of the conditional hypergeometric distribution specified by the parameters

Examples

rchyper(100, 10, c(12,13,14), c(7,8,9))

Index

dchyper, 2 mleM, 2 mleN, 3 mleS, 4 pchyper, 5 pvalchyper, 5 qchyper, 6 rchyper, 7