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Abstract

The package mixR performs maximum likelihood estimation (MLE) for finite mixture models for families
including Normal, Weibull, Gamma and Lognormal via EM algorithm. It also conducts model selection
by using Bayesian Information Criterion (BIC) or bootstrap likelihood ratio test (LRT). The data used for
mixture model fitting can be raw data or binned data. The model fitting is accelerated by using R package
Rcpp.
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1 Background

1.1 Mixture models

Finite mixture models can be represented by

f (x; Φ) =
g

∑
j=1

πj f j(x; θj)

where f (x; Φ) is the probability density function (p.d.f.) or probability mass function (p.m.f.) of the mixture
model, f j(x; θj) is the p.d.f. or p.m.f. of the jth component of the mixture model, πj is the proportion of the jth
component, θj is the parameter of the jth component which can be a scalar or a vector, Φ = (π1, θ1, . . . , πg, θg)
is a vector of all the parameters in the mixture model, and g is the total number of components in the mixture
model. The MLE of Φ can be obtained using the EM algorithm (Dempster, Laird, and Rubin 1977).
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1.2 Mixture model selection by BIC

One critical problem for a mixture model is how to estimate g when there is no such a priori knowledge. As
EM algorithm doesn’t estimate g itself, a commonly used approach to estimate g is to fit a series of mixture
models with different values of g and then select g using information criteria such as Akaike Information
Criterion (AIC), Bayesian Information Criterion (BIC), Deviance Information Criterion (DIC), or Integrated
Complete-data Likelihood (ICL). Among all information criteria, BIC has shown to outperform other ones in
model selection (Steele and Raftery 2010). BIC is defined as

BIC = k log(n)− 2 log(L̂)

in which k is the total number of parameters in the mixture model, n is the size of data, and L̂ is the estimated
maximum likelihood of the model. The model which has the lowest BIC is regarded as the optimal one.

1.3 Mixture model selection by bootstrap LRT

A mixture model with g = g1 components is a nested model of a mixture model with g = g2(g1 < g2)
components, as the former model can be regarded as the later one with πj = 0 for g2 − g1 components and
pj > 0 for all the remaining g1 components. LRT is a common tool for assessing the goodness of fit of the
nested model (H0 : g = g1) compared to the full model (Ha : g = g2). However the regularity condition of
the LRT, which requires that the parameter space of the model in the null hypothesis H0 should lie in the
interior of the parameter space of the model in the alternative hypothesis Ha, doesn’t hold for the mixture
models (Feng and McCulloch 1996), and therefore the test statistic of LRT, denoted as w(x) doesn’t follow a
known Chi-square distribution under H0. McLachlan (1987) proposed the idea of applying the method of
bootstrapping (Efron and Tibshirani 1994) for approximating the distribution of w(x). The general steps of
bootstrap LRT are as follows.

1. For the given data x, estimate Φ under both H0 and Ha to get Φ̂0 and Φ̂1. Calculate the observed
log-likelihood `(x; Φ̂0) and `(x; Φ̂1). The LRT statistic is defined as w0 = −2(`(x; Φ̂0)− `(x; Φ̂1)).

2. Generate random data of the same size as the original data x from the model under the H0 using
estimated parameter Φ̂0, then repeat step 1 using the simulated data. Repeat this process for B times to
get a vector of the simulated likelihood ratio test statistics w(1)

1 , . . . , w(B)
1 .

3. Calculate the empirical p-value as

p =
1
B

B

∑
i=1

I(w(i)
1 > w0)

where I(·) is the indicator function.

1.4 Fitting mixture models to the binned data

The binned data is present instead of the raw data in some situations, often for the reason of storage
convenience or necessity. The binned data is recorded in the form of (ai, bi, ni) where ai is the left bin value
of the ith bin, bi is the right bin value of the ith bin, and ni is the number of observations that fall in the ith bin
for i = 1, . . . , r, where r is the total number of bins.

The MLE for finite mixture models fitted to binned data can also be obtained via EM algorithm by introducing
an additional latent variable x that represents the unknown value of the raw data, besides the usually latent
variable z that represents the component an observation belongs to. To apply the EM algorithm we first
write the complete-data log-likelihood as

Q(Φ; Φ(p)) =
g

∑
j=1

r

∑
i=1

niz(p)[log f (x(p); θj) + log πj]

where z(p) is the expected value of z given Φ(p) and x(p), the estimated value of Φ and expected value of x
at pth iteration. The estimate of Φ can be updated alternatively via an E-step, in which we estimate Φ by
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maximizing Q(Φ; Φ(p)), and an M-step, in which we compute x(p) and z(p), until the convergence of the EM
algorithm. The M-step may not have a closed-form solution, e.g. in the Weibull mixture model or Gamma
mixture model, which if is the case, an iterative approach like Newton’s algorithm or bisection method may
be used.

1.5 Beyond normality

The normal distribution is mostly used in a mixture model for continuous data, but there are also circum-
stances when other distributions fit the data better. McLachlan and Peel (2004) explained that a limitation of
the normal distribution is that when the shapes of the components are skewed, there may not be a one-to-one
correspondence between the number of components in the mixture model and that in the data. More than
one normal component is needed to model a skewed component, which may cause overestimation of g.
For skewed or asymmetric components, other distributions such as Gamma, Log-normal or Weibull might
provide better model fitting than the normal distribution in a mixture model. As an example, Yu and Harvill
(2019) demonstrated two examples where Weibull mixture models are preferred.

2 mixR package

We present the functions in mixR package for (a) fitting finite mixture models for continuous data for families
including Normal, Weibull, Gamma and Log-normal via EM algorithm; (b) selecting the optimal number of
components for a mixture model using BIC or bootstrap LRT. We also discuss how to fit mixture models
with binned data.

2.1 Model fitting

The function mixfit() can be used to fit mixture models for four different families – Normal, Weibull,
Gamma, and Log-normal. For Normal distribution, the variances of each component are the same by setting
ev = TRUE.
# generate data from a Normal mixture model
library(mixR)
set.seed(102)
x1 = rmixnormal(1000, c(0.3, 0.7), c(-2, 3), c(2, 1))

# fit a Normal mixture model (unequal variances)
mod1 = mixfit(x1, ncomp = 2); mod1
#> Normal mixture model with 2 components
#> comp1 comp2
#> pi 0.2882564 0.7117436
#> mu -2.2742464 2.9863952
#> sd 1.8172431 0.9636397
#>
#> EM iterations: 25 AIC: 4213.68 BIC: 4238.22 log-likelihood: -2101.84

# fit a Normal mixture model (equal variance)
mod1_ev = mixfit(x1, ncomp = 2, ev = TRUE); mod1_ev
#> Normal mixture model with 2 components
#> comp1 comp2
#> pi 0.2470491 0.7529509
#> mu -2.7354208 2.8498073
#> sd 1.2198083 1.2198083
#>
#> EM iterations: 10 AIC: 4289.59 BIC: 4309.22 log-likelihood: -2140.8
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plot(mod1, title = 'Normal Mixture Model (unequal variances)')
plot(mod1_ev, title = 'Normal Mixture Model (equal variance)')
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Figure 1: The fitted normal mixture model with unequal variances (left) and equal variance(right)

The initial values for Φ are estimated by k-means or hierarchical clustering method if they are not provided
by the users. In situations when EM algorithm is stuck in a local minimum and leads to unsatisfactory fitting
results, which happens more likely when the number of components g and/or data size n are large, initial
values can be provided manually to get a better fitting.

To illustrate the idea that g tends to be over-estimated when using a normal mixture model to fit data with
asymmetric or skewed components, we simulate data from a Weibull mixture model with g = 2, then fit both
Normal and Weibull mixture models to the data. First we fit both models with g = 2. Weibull distribution
provides better fitting than Normal by either visually checking the plots of the fitted results in Figure 2, or
the fact that the log-likelihood of the fitted Weibull mixture model (244) is much higher than that of the fitted
Normal mixture model (200). Figure 3 shows that the best value of g for Weibull mixture model is two and
for Normal mixture model is four, higher than the actual value of g.

x2 = rmixweibull(1000, c(0.4, 0.6), c(0.6, 1.3), c(0.1, 0.1))
mod2_weibull = mixfit(x2, family = 'weibull', ncomp = 2); mod2_weibull
#> Weibull mixture model with 2 components
#> comp1 comp2
#> pi 0.3637416 0.6362584
#> mu 0.6072458 1.3017602
#> sd 0.1046977 0.0970958
#> shape 6.8080322 16.5082764
#> scale 0.6501023 1.3441343
#>
#> EM iterations: 4 AIC: -519.07 BIC: -494.53 log-likelihood: 264.53
mod2_normal = mixfit(x2, ncomp = 2); mod2_normal
#> Normal mixture model with 2 components
#> comp1 comp2
#> pi 0.3685599 0.6314401
#> mu 0.6112804 1.3037704
#> sd 0.1109374 0.0957956
#>
#> EM iterations: 10 AIC: -429.92 BIC: -405.39 log-likelihood: 219.96
plot(mod2_weibull)
plot(mod2_normal)
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Figure 2: The fitted Weibull mixture model (left) and Normal mixture model (right) to the same data

2.2 Model selection by BIC

The function select() is used to fit a series of finite mixture models with values of g specified in ncomp, and
then select the best g by BIC. For normal mixture models, both equal and unequal variances are considered.
Figure 3 shows the value of BIC for normal and Weibull mixture models with different g. For Weibull mixture
models, BIC increases monotonically as g increases from two to six, therefore the best value of g is two. For
normal mixture models, BIC decreases first when g goes from two to four, and then increases when g goes
from four to six, which is true for both equal variance and unequal variances. The best model is g = 4 with
equal variance as its BIC is the lowest. Figure 4 shows the fitted Weibull mixture models and normal mixture
model with the best values of g.
# Selecting the best g for Weibull mixture model
s_weibull = select(x2, ncomp = 2:6, family = 'weibull')

# Selecting the best g for Normal mixture model
s_normal = select(x2, ncomp = 2:6)
plot(s_weibull)
plot(s_normal)
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Figure 3: The value of BIC for Weibull mixture models (left) and Normal mixture models (right) with
different values of g.

plot(mod2_weibull)
plot(mixfit(x2, ncomp = 4, ev = TRUE))
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Figure 4: The fitted Weibull mixture model with g = 2 (left) and the Normal mixture model with g = 4 and
equal variance (right)

2.3 Model selection by bootstrap LRT

The function bs.test() performs bootstrap LRT and returns the p-value as well as the test statistics w0 and
w1. As an example, the data set x1 above are generated from a Normal mixture model with g = 2. If we
conduct bootstrap LRT for g = 2 against g = 3 for x1 and set the number of bootstrap iterations B=100, we
get p-value of 0.48, showing that the Normal mixture model with three components is not any better than
the one with two components for data x1.

As another example, the data set x2 above are generated from a Weibull mixture model with g = 2. We
discussed previously that if we use Normal distribution to fit the mixture model, the best value of g selected
by BIC is four. A bootstrap LRT of g = 2 against g = 4 returns zero p-value, indicating that if we fit a Normal
mixture model to x2, g = 4 is a much better fit than g = 2, though visually the data shows two modes rather
than four. Figure 5 shows the histogram of w1 and the location of w0 (red vertical line) for the above two
examples.

b1 = bs.test(x1, ncomp = c(2, 3))
plot(b1, main = 'Bootstrap LRT for Normal Mixture Models (g = 2 vs g = 3)')
b1$pvalue
#> [1] 0.47
b2 = bs.test(x2, ncomp = c(2, 4))
plot(b2, main = 'Bootstrap LRT for Normal Mixture Models (g = 2 vs g = 4)')
b2$pvalue
#> [1] 0

2.4 Mixture model fitting with binned data

The function mixfit() can also fit mixture models with binned data, in the form of a three-column matrix
each row of which represents a bin with the left bin value, the right bin value, and the total number of data
points that fall in each bin (analogous to the data used to create a histogram). The function bin() is used to
create binned data from raw data, and the function reinstate() can simulate the raw data from binned
data. Figure 6 shows the mixture models fitted with data binned from raw data x1 and x2, with 30 bins for
each data set.

x1_binned = bin(x1, seq(min(x1), max(x1), length = 30))
head(x1_binned, 3)
#> a b freq
#> [1,] -7.070279 -6.625030 2
#> [2,] -6.179782 -5.734534 7
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Bootstrap LRT for Normal Mixture Models (g = 2 vs g = 3)
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Figure 5: (left) The bootstrap LRT of H0 : g = 2 against H1 : g = 3 for fitting Normal mixture models for
data ‘x1‘; (right) The bootstrap LRT of H0 : g = 2 against H1 : g = 4 for fitting Normal mixture models for
data ‘x2‘. In each plot the histogram shows the distribution of w1 and the red line shows the value of w0.

#> [3,] -5.734534 -5.289286 6

mod1_binned = mixfit(x1_binned, ncomp = 2)
plot(mod1_binned, xlab = 'x1_binned',

title = 'The Normal Mixture Model Fitted With Binned Data')
mod1_binned
#> Normal mixture model with 2 components
#> comp1 comp2
#> pi 0.2872466 0.7127534
#> mu -2.2952167 2.9887117
#> sd 1.8010692 0.9593141
#>
#> EM iterations: 34 AIC: 5848.1 BIC: 5872.64 log-likelihood: -2919.05

x2_binned = bin(x2, seq(min(x2), max(x2), length = 30))
head(x2_binned, 3)
#> a b freq
#> [1,] 0.3024235 0.3439529 2
#> [2,] 0.3439529 0.3854824 5
#> [3,] 0.3854824 0.4270118 12

mod2_binned = mixfit(x2_binned, ncomp = 2, family = 'weibull')
plot(mod2_binned, xlab = 'x2_binned',

title = 'The Weibull Mixture Model Fitted With Binned Data')
mod2_binned
#> Weibull mixture model with 2 components
#> comp1 comp2
#> pi 0.3638721 0.6361279
#> mu 0.6079659 1.3020818
#> sd 0.1036559 0.0963527
#> shape 6.8906250 16.6448242
#> scale 0.6504611 1.3441444
#>
#> EM iterations: 6 AIC: 5863.35 BIC: 5887.89 log-likelihood: -2926.67

As binning can be considered a way to compress data, binned data can accelerate the fitting of mixture
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Figure 6: (left) The Normal mixture model fitted with binned data; (right) The Weibull mixture model fitted
with binned data.

models, especially when the original data set is large. To illustrate, we simulate 100,000 data points from a
Normal mixture model with five components, and bin the data with 100 bins. Normal mixture models are
fitted on both the simulated raw data and binned data. The results show that model fitting takes 27 seconds
on raw data, and less than one second on binned data. Another example shows that fitting a Weibull mixture
model with data binned from a data set with one million observations takes just over two seconds 1.
# a function to generate parameters for a mixture model
generate_params = function(ncomp = 2) {

pi = runif(ncomp)
low = runif(1, 0, 0)
upp = low + runif(1, 0, 10)
mu = runif(ncomp, low, upp)
sd = runif(ncomp, (max(mu) - min(mu))/ncomp/10, (max(mu) - min(mu))/ncomp/2)
list(pi = pi / sum(pi), mu = sort(mu), sd = sd)

}

# simulate data from a Normal mixture model
set.seed(988)
n = 100000
ncomp = 5
params = generate_params(ncomp)
x_large = rmixnormal(n, pi = params$pi, mu = params$mu, sd = params$sd)

# fitting a Normal mixture model with raw data
t1 = Sys.time()
mod_large <- mixfit(x_large, ncomp = ncomp)
t2 = Sys.time()
t2 - t1
#> Time difference of 13.79882 secs

plot(mod_large, title = 'Normal Mixture Model Fitted With Raw Data')
mod_large
#> Normal mixture model with 5 components
#> comp1 comp2 comp3 comp4 comp5
#> pi 0.2808553 0.1288440 0.1485099 0.2384039 0.2033869

1evaluated on iMac with processor: 3 GHz Quad-Core Intel Core i5, memory: 8 GB 2400 MHz DDR4
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#> mu 0.0266805 0.6152623 1.1103667 1.5788525 3.4490338
#> sd 0.0865347 0.1714647 0.1256346 0.2206441 0.2436014
#>
#> EM iterations: 225 AIC: 198090.29 BIC: 198223.47 log-likelihood: -99031.14

# fitting a Normal mixture model with binned data
t3 = Sys.time()
x_binned = bin(x_large, seq(min(x_large), max(x_large), length = 100))
mod_binned <- mixfit(x_binned, ncomp = ncomp)
t4 = Sys.time()
t4 - t3
#> Time difference of 0.566231 secs

plot(mod_binned, title = 'Normal Mixture Model Fitted With Binned Data')
mod_binned
#> Normal mixture model with 5 components
#> comp1 comp2 comp3 comp4 comp5
#> pi 0.2810244 0.1273384 0.1544025 0.2338445 0.2033902
#> mu 0.0268700 0.6129720 1.1125285 1.5852661 3.4490635
#> sd 0.0853756 0.1683686 0.1288791 0.2164886 0.2431581
#>
#> EM iterations: 364 AIC: 804626.59 BIC: 804759.77 log-likelihood: -402299.3
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Figure 7: Normal mixture models fitted to the raw data (left) and binned data (right)

3 Citation

Run citation(package = 'mixR') to see how to cite package mixR in publications.
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