mpmsim

Project Main Devel
License: GPL v3 R-CMD-check R-CMD-check-devel
Project Status: Active – The project has reached a stable, usable state and is being actively developed. Codecov test coverage
CRAN_Status_Badge

mpmsim contains tools for generating random or semi-random matrix population models (MPMs) given a particular life history archetype. It also facilitates the generation of Leslie matrices, and the simulation of MPMs based on expected transition rates and sample sizes. This can be useful for exploring uncertainty in inferences when sample sizes are small (or unknown).

Installation

You can install the latest stable version of mpmsim from CRAN like this:

install.packages("mpmsim")

Development version(s)

The package is being developed (here) on GitHub. You can install the latest development version of mpmsim like this:

# install package 'remotes' if necessary
# will already be installed if 'devtools' is installed
install.packages("remotes")

# argument 'build_opts = NULL' only needed if you want to build vignettes
remotes::install_github("jonesor/mpmsim", build_opts = NULL)

During development there may be other versions, with additional functionality, available on different GitHub “branches”. To install from one of these branches, use the following syntax:

# install from the 'dev' branch
remotes::install_github("jonesor/mpmsim", ref = "dev")

Usage

First, load the package.

library(mpmsim)

Generate a Leslie matrix

The make_leslie_mpm function can be used to generate a Leslie matrix, where the stages represent discrete age classes. In a Leslie matrix, survival is represented in the lower sub-diagonal and the lower-right-hand corner element, while fertility is shown in the top row. Both survival and fertility have a length equal to the number of stages in the model. Users can specify both survival and fertility as either a single value or a vector of values, with a length equal to the dimensions of the matrix model. If these arguments are single values, the value is repeated along the survival/fertility sequence.

make_leslie_mpm(
  survival = seq(0.1, 0.45, length.out = 4),
  fertility = c(0, 0, 2.4, 5), n_stages = 4, split = FALSE
)
#>      [,1]      [,2]      [,3] [,4]
#> [1,]  0.0 0.0000000 2.4000000 5.00
#> [2,]  0.1 0.0000000 0.0000000 0.00
#> [3,]  0.0 0.2166667 0.0000000 0.00
#> [4,]  0.0 0.0000000 0.3333333 0.45

Using a functional form for mortality

Users can generate Leslie matrices with particular functional forms of mortality by first making a data frame of a simplified life table that includes age and survival probability within each age interval.

(surv_prob <- model_survival(params = c(0.2, 0.4), model = "Gompertz"))
#>   x        hx         lx        qx        px
#> 1 0 0.2000000 1.00000000 0.2205623 0.7794377
#> 2 1 0.2983649 0.77943774 0.3104641 0.6895359
#> 3 2 0.4451082 0.53745028 0.4256784 0.5743216
#> 4 3 0.6640234 0.30866930 0.5627783 0.4372217
#> 5 4 0.9906065 0.13495691 0.7089351 0.2910649
#> 6 5 1.4778112 0.03928123 0.8413767 0.1586233

Age-specific survival probability is given by the px column in the output from model_survival. Users can also use a functional form for fertility (see model_fertility) and here a simple step function is assumed.

survival <- surv_prob$px
fertility <- model_fertility(
  age = 0:(length(survival) - 1),
  params = c(A = 5), maturity = 2, model = "step"
)

Subsequently, these survival and fertility values can be applied to the Leslie matrix as follows.

make_leslie_mpm(
  survival = survival, fertility = fertility,
  n_stages = length(survival), split = FALSE
)
#>           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 0.0000000 0.0000000 5.0000000 5.0000000 5.0000000 5.0000000
#> [2,] 0.7794377 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.0000000 0.6895359 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.0000000 0.0000000 0.5743216 0.0000000 0.0000000 0.0000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.4372217 0.0000000 0.0000000
#> [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.2910649 0.1586233

Sets of Leslie matrices

Users can generate large numbers of plausible Leslie matrices by repeating the make_leslie_mpm command in a loop. For example, the following code produces a list of five Leslie matrices that have increasing survival with age.

sample_size <- 5
juvSurv <- runif(n = sample_size, min = 0.0, max = 0.1)
adultSurv <- runif(n = sample_size, min = 0.4, max = 0.8)
adultFert <- rpois(sample_size, 6)

outputMPMs <- NULL
for (i in 1:sample_size) {
  outputMPMs[[i]] <- make_leslie_mpm(
    survival = seq(juvSurv[i], adultSurv[i], length.out = 6),
    fertility = c(0, 0, rep(adultFert[i], 4)), n_stages = 6, split = FALSE
  )
}

outputMPMs
#> [[1]]
#>           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 0.0000000 0.0000000 6.0000000 6.0000000 6.0000000 6.0000000
#> [2,] 0.0914806 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.0000000 0.1947122 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.0000000 0.0000000 0.2979437 0.0000000 0.0000000 0.0000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.4011753 0.0000000 0.0000000
#> [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.5044068 0.6076384
#> 
#> [[2]]
#>            [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 0.00000000 0.0000000 7.0000000 7.0000000 7.0000000 7.0000000
#> [2,] 0.09370754 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.00000000 0.2138931 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.00000000 0.0000000 0.3340787 0.0000000 0.0000000 0.0000000
#> [5,] 0.00000000 0.0000000 0.0000000 0.4542642 0.0000000 0.0000000
#> [6,] 0.00000000 0.0000000 0.0000000 0.0000000 0.5744498 0.6946353
#> 
#> [[3]]
#>            [,1]      [,2]      [,3]       [,4]       [,5]       [,6]
#> [1,] 0.00000000 0.0000000 10.000000 10.0000000 10.0000000 10.0000000
#> [2,] 0.02861395 0.0000000  0.000000  0.0000000  0.0000000  0.0000000
#> [3,] 0.00000000 0.1136645  0.000000  0.0000000  0.0000000  0.0000000
#> [4,] 0.00000000 0.0000000  0.198715  0.0000000  0.0000000  0.0000000
#> [5,] 0.00000000 0.0000000  0.000000  0.2837656  0.0000000  0.0000000
#> [6,] 0.00000000 0.0000000  0.000000  0.0000000  0.3688161  0.4538666
#> 
#> [[4]]
#>            [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 0.00000000 0.0000000 4.0000000 4.0000000 4.0000000 4.0000000
#> [2,] 0.08304476 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.00000000 0.1989952 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.00000000 0.0000000 0.3149456 0.0000000 0.0000000 0.0000000
#> [5,] 0.00000000 0.0000000 0.0000000 0.4308961 0.0000000 0.0000000
#> [6,] 0.00000000 0.0000000 0.0000000 0.0000000 0.5468465 0.6627969
#> 
#> [[5]]
#>            [,1]      [,2]      [,3]      [,4]      [,5]      [,6]
#> [1,] 0.00000000 0.0000000 6.0000000 6.0000000 6.0000000 6.0000000
#> [2,] 0.06417455 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.00000000 0.1877448 0.0000000 0.0000000 0.0000000 0.0000000
#> [4,] 0.00000000 0.0000000 0.3113151 0.0000000 0.0000000 0.0000000
#> [5,] 0.00000000 0.0000000 0.0000000 0.4348854 0.0000000 0.0000000
#> [6,] 0.00000000 0.0000000 0.0000000 0.0000000 0.5584556 0.6820259

Here’s one way to do a similar thing with uncertainty applied to a Gompertz mortality.

sample_size <- 5
b0_values <- rnorm(n = sample_size, mean = 0.3, sd = 0.1)
b1_values <- rnorm(n = sample_size, mean = 0.4, sd = 0.1)
fertility_values <- rnorm(n = sample_size, mean = 3, sd = 1)

outputMPMs <- NULL
for (i in 1:sample_size) {
  surv_prob <- model_survival(
    params = c(b0_values[i], b1_values[i]),
    model = "Gompertz"
  )
  survival <- surv_prob$px

  maturity <- 2
  fertility <- c(
    rep(0, maturity),
    rep(fertility_values[i], length(survival) - maturity)
  )

  outputMPMs[[i]] <- make_leslie_mpm(
    survival = survival, fertility = fertility,
    n_stages = length(survival), split = FALSE
  )
}

outputMPMs
#> [[1]]
#>           [,1]      [,2]      [,3]      [,4]       [,5]
#> [1,] 0.0000000 0.0000000 3.9657529 3.9657529 3.96575288
#> [2,] 0.5662538 0.0000000 0.0000000 0.0000000 0.00000000
#> [3,] 0.0000000 0.4267964 0.0000000 0.0000000 0.00000000
#> [4,] 0.0000000 0.0000000 0.2795021 0.0000000 0.00000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.1483049 0.05742431
#> 
#> [[2]]
#>           [,1]      [,2]      [,3]      [,4]      [,5]
#> [1,] 0.0000000 0.0000000 2.1854291 2.1854291 2.1854291
#> [2,] 0.7828594 0.0000000 0.0000000 0.0000000 0.0000000
#> [3,] 0.0000000 0.6593341 0.0000000 0.0000000 0.0000000
#> [4,] 0.0000000 0.0000000 0.4922804 0.0000000 0.0000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.2994381 0.1285137
#> 
#> [[3]]
#>           [,1]      [,2]      [,3]      [,4]       [,5]
#> [1,] 0.0000000 0.0000000 3.2839578 3.2839578 3.28395781
#> [2,] 0.6591217 0.0000000 0.0000000 0.0000000 0.00000000
#> [3,] 0.0000000 0.5037044 0.0000000 0.0000000 0.00000000
#> [4,] 0.0000000 0.0000000 0.3236247 0.0000000 0.00000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.1562993 0.04720172
#> 
#> [[4]]
#>           [,1]      [,2]      [,3]      [,4]      [,5]       [,6]
#> [1,] 0.0000000 0.0000000 2.8383014 2.8383014 2.8383014 2.83830135
#> [2,] 0.7775471 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000
#> [3,] 0.0000000 0.6636757 0.0000000 0.0000000 0.0000000 0.00000000
#> [4,] 0.0000000 0.0000000 0.5127486 0.0000000 0.0000000 0.00000000
#> [5,] 0.0000000 0.0000000 0.0000000 0.3367703 0.0000000 0.00000000
#> [6,] 0.0000000 0.0000000 0.0000000 0.0000000 0.1697708 0.05561344
#> 
#> [[5]]
#>           [,1]      [,2]      [,3]      [,4]
#> [1,] 0.0000000 0.0000000 4.9355718 4.9355718
#> [2,] 0.5533382 0.0000000 0.0000000 0.0000000
#> [3,] 0.0000000 0.3959549 0.0000000 0.0000000
#> [4,] 0.0000000 0.0000000 0.2344795 0.1032486

Simulate sampling error for an MPM

The function add_mpm_error can be used to simulate an MPM with sampling error, based on expected transition rates (survival and fecundity) and sample sizes. The expected transition rates must be provided as matrices. The sample size(s) can be given as either a matrix of sample sizes for each element of the matrix or as a single value which is then applied to all elements of the matrix.

The function uses a binomial process to simulate survival/growth elements and a Poisson process to simulate the fecundity elements. As a result, when sample sizes are large, the simulated MPM will closely reflect the expected transition rates. In contrast, when sample sizes are small, the simulated matrices will become more variable.

To illustrate use of the function, the following code first generates a 3-stage Leslie matrix using the make_leslie_mpm function. It then passes the U and F matrices from this Leslie matrix to the add_mpm_error function. Then, two matrices are simulated, first with a sample size of 1000, and then with a sample size of seven.

mats <- make_leslie_mpm(
  survival = c(0.3, 0.5, 0.8),
  fertility = c(0, 2.2, 4.4),
  n_stages = 3, split = TRUE
)

add_mpm_error(
  mat_U = mats$mat_U, mat_F = mats$mat_F,
  sample_size = 1000, split = FALSE, by_type = FALSE
)
#>       [,1]  [,2]  [,3]
#> [1,] 0.000 2.255 4.482
#> [2,] 0.287 0.000 0.000
#> [3,] 0.000 0.507 0.794

add_mpm_error(
  mat_U = mats$mat_U, mat_F = mats$mat_F,
  sample_size = 7, split = FALSE, by_type = FALSE
)
#>           [,1]      [,2]     [,3]
#> [1,] 0.0000000 1.8571429 4.714286
#> [2,] 0.4285714 0.0000000 0.000000
#> [3,] 0.0000000 0.7142857 1.000000

A list of an arbitrary number of matrices can be generated easily using replicate, as follows.

replicate(
  n = 5,
  add_mpm_error(
    mat_U = mats$mat_U, mat_F = mats$mat_F,
    sample_size = 7, split = FALSE, by_type = FALSE
  )
)
#> , , 1
#> 
#>      [,1]      [,2]      [,3]
#> [1,]    0 1.5714286 4.1428571
#> [2,]    0 0.0000000 0.0000000
#> [3,]    0 0.4285714 0.7142857
#> 
#> , , 2
#> 
#>           [,1]      [,2]      [,3]
#> [1,] 0.0000000 2.2857143 5.5714286
#> [2,] 0.7142857 0.0000000 0.0000000
#> [3,] 0.0000000 0.5714286 0.7142857
#> 
#> , , 3
#> 
#>           [,1]      [,2]      [,3]
#> [1,] 0.0000000 2.1428571 4.4285714
#> [2,] 0.1428571 0.0000000 0.0000000
#> [3,] 0.0000000 0.5714286 0.5714286
#> 
#> , , 4
#> 
#>           [,1]      [,2]      [,3]
#> [1,] 0.0000000 1.7142857 4.0000000
#> [2,] 0.7142857 0.0000000 0.0000000
#> [3,] 0.0000000 0.5714286 0.8571429
#> 
#> , , 5
#> 
#>           [,1]      [,2]      [,3]
#> [1,] 0.0000000 2.5714286 4.5714286
#> [2,] 0.4285714 0.0000000 0.0000000
#> [3,] 0.0000000 0.4285714 0.7142857

Generate single random Lefkovitch MPMs

The random_mpm function can be used to generate a random Lefkovitch matrix population model (MPM) with element values based on defined life history archetypes. The function draws survival and transition/growth probabilities from a Dirichlet distribution to ensure that the column totals, including death, are less than or equal to 1. Fecundity can be specified as a single value or as a vector with a length equal to the dimensions of the matrix. If specified as a single value, it is placed in the top-right corner of the matrix. If specified as a vector of length n_stages, it spans the entire top row of the matrix. The archetype argument can be used to constrain the MPMs, for example, archetype = 2 constraints the survival probability to increase monotonically as individuals advance to later stages. For more information, see the documentation for random_mpm and Takada et al. (2018). In the following example, I split the output matrices into the U and F matrices, which could be summed to create the A matrix.

(rMPM <- random_mpm(
  n_stages = 3, fecundity = 20,
  archetype = 2, split = TRUE
))
#> $mat_A
#>            [,1]        [,2]       [,3]
#> [1,] 0.01566286 0.003962617 20.2372038
#> [2,] 0.19165445 0.447044844  0.1369993
#> [3,] 0.25834510 0.111258159  0.3916082
#> 
#> $mat_U
#>            [,1]        [,2]      [,3]
#> [1,] 0.01566286 0.003962617 0.2372038
#> [2,] 0.19165445 0.447044844 0.1369993
#> [3,] 0.25834510 0.111258159 0.3916082
#> 
#> $mat_F
#>      [,1] [,2] [,3]
#> [1,]    0    0   20
#> [2,]    0    0    0
#> [3,]    0    0    0

Generate a set of random Lefkovitch MPMs

The generate_mpm_set function can be used to quickly generate large numbers of Lefkovitch MPMs using the above approach. For example, the following code generates five MPMs with archetype 1. By using the constraint argument, users can specify an acceptable characteristics for the set of matrices. In this case, population growth rate range, which can be useful for life history analyses where we might assume that only life histories with lambda values close to 1 can persist in nature. We set the argument as_compadre = FALSE to ensure that the function returns a list object rather than a CompadreDB object.

library(popbio)
constrain_df <- data.frame(fun = "lambda", arg = NA, lower = 0.9, upper = 1.1)
generate_mpm_set(
  n = 5, n_stages = 4, fecundity = 8, archetype = 1, constraint = constrain_df,
  as_compadre = FALSE
)
#> $A_list
#> $A_list[[1]]
#>            [,1]       [,2]       [,3]       [,4]
#> [1,] 0.18613484 0.05056112 0.60606250 8.03563397
#> [2,] 0.06525489 0.23191129 0.02425596 0.15026015
#> [3,] 0.30463553 0.08240703 0.08948712 0.02062413
#> [4,] 0.01236183 0.14045978 0.04548197 0.18125603
#> 
#> $A_list[[2]]
#>            [,1]       [,2]      [,3]       [,4]
#> [1,] 0.24550383 0.17451532 0.3054684 8.31033310
#> [2,] 0.19319756 0.35861915 0.1851036 0.44100809
#> [3,] 0.11691720 0.28889696 0.1836001 0.08302706
#> [4,] 0.02694353 0.05514741 0.1076480 0.15043028
#> 
#> $A_list[[3]]
#>             [,1]       [,2]       [,3]       [,4]
#> [1,] 0.027883153 0.28550192 0.18463803 8.18854957
#> [2,] 0.497257332 0.12466879 0.12901066 0.36556709
#> [3,] 0.000321996 0.12822913 0.07978954 0.03463416
#> [4,] 0.012942131 0.08459218 0.03693279 0.18702167
#> 
#> $A_list[[4]]
#>            [,1]        [,2]       [,3]       [,4]
#> [1,] 0.45535069 0.079556357 0.01573857 8.44687525
#> [2,] 0.12608798 0.809470988 0.13932014 0.16388405
#> [3,] 0.35947604 0.063327966 0.26672277 0.04283801
#> [4,] 0.02558323 0.004365279 0.08267203 0.08580600
#> 
#> $A_list[[5]]
#>            [,1]       [,2]      [,3]       [,4]
#> [1,] 0.05029395 0.33485342 0.2077841 8.06016689
#> [2,] 0.12684505 0.01529961 0.1784790 0.62796386
#> [3,] 0.19514844 0.40393834 0.3428090 0.03261264
#> [4,] 0.02243209 0.10121339 0.1090846 0.07553934
#> 
#> 
#> $U_list
#> $U_list[[1]]
#>            [,1]       [,2]       [,3]       [,4]
#> [1,] 0.18613484 0.05056112 0.60606250 0.03563397
#> [2,] 0.06525489 0.23191129 0.02425596 0.15026015
#> [3,] 0.30463553 0.08240703 0.08948712 0.02062413
#> [4,] 0.01236183 0.14045978 0.04548197 0.18125603
#> 
#> $U_list[[2]]
#>            [,1]       [,2]      [,3]       [,4]
#> [1,] 0.24550383 0.17451532 0.3054684 0.31033310
#> [2,] 0.19319756 0.35861915 0.1851036 0.44100809
#> [3,] 0.11691720 0.28889696 0.1836001 0.08302706
#> [4,] 0.02694353 0.05514741 0.1076480 0.15043028
#> 
#> $U_list[[3]]
#>             [,1]       [,2]       [,3]       [,4]
#> [1,] 0.027883153 0.28550192 0.18463803 0.18854957
#> [2,] 0.497257332 0.12466879 0.12901066 0.36556709
#> [3,] 0.000321996 0.12822913 0.07978954 0.03463416
#> [4,] 0.012942131 0.08459218 0.03693279 0.18702167
#> 
#> $U_list[[4]]
#>            [,1]        [,2]       [,3]       [,4]
#> [1,] 0.45535069 0.079556357 0.01573857 0.44687525
#> [2,] 0.12608798 0.809470988 0.13932014 0.16388405
#> [3,] 0.35947604 0.063327966 0.26672277 0.04283801
#> [4,] 0.02558323 0.004365279 0.08267203 0.08580600
#> 
#> $U_list[[5]]
#>            [,1]       [,2]      [,3]       [,4]
#> [1,] 0.05029395 0.33485342 0.2077841 0.06016689
#> [2,] 0.12684505 0.01529961 0.1784790 0.62796386
#> [3,] 0.19514844 0.40393834 0.3428090 0.03261264
#> [4,] 0.02243209 0.10121339 0.1090846 0.07553934
#> 
#> 
#> $F_list
#> $F_list[[1]]
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    8
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> $F_list[[2]]
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    8
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> $F_list[[3]]
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    8
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> $F_list[[4]]
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    8
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0
#> 
#> $F_list[[5]]
#>      [,1] [,2] [,3] [,4]
#> [1,]    0    0    0    8
#> [2,]    0    0    0    0
#> [3,]    0    0    0    0
#> [4,]    0    0    0    0

Plot a matrix

It can be helpful to visualise the matrices. This can be accomplished with the function plot_matrix. The output of plot_matrix is of class ggplot and as such the colour scheme can be modified in the usual way with, for example, scale_fill_gradient or similar.

Here’s the matrix:

rMPM$mat_U
#>            [,1]        [,2]      [,3]
#> [1,] 0.01566286 0.003962617 0.2372038
#> [2,] 0.19165445 0.447044844 0.1369993
#> [3,] 0.25834510 0.111258159 0.3916082

And here’s the plot:

p <- plot_matrix(rMPM$mat_U)
p + ggplot2::scale_fill_gradient(low = "black", high = "yellow")

Contributions

All contributions are welcome. Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

There are numerous ways of contributing.

  1. You can submit bug reports, suggestions etc. by opening an issue.

  2. You can copy or fork the repository, make your own code edits and then send us a pull request. Here’s how to do that.

  3. You are also welcome to email me.