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This document provides a short overview of the npcurePK package.

Introduction

Survival analysis studies the duration of time Y until one event occurs, mainly through the survival function S(t) = P(Y > t). Cure
models are a class of time-to-event models where a proportion of individuals will never experience the event of interest, so they are
considered cured (Y =∞). The mixture cure model (MCM) assumes that the population is a mixture of cured and susceptible individuals
(Peng and Yu, 2021). So in a conditional setting with a covariate X , the conditional survival function S(t | x) = P(Y > t | X = x) can be
written as

S(t | x) = 1− p(x) + p(x)S0(t | x)

where 1− p(x) = P(Y =∞ | X = x) is the probability of cure, and S0(t | x) = P(Y > t | Y <∞, X = x) is the conditional survival
function of the uncured individuals.

The lifetimes of the so-called cured individuals are always censored. It is usually assumed that one never knows which censored
observation are cured and which are uncured, so the cure status is unknown for censored times. The absence of a censored individual’s
cure status (i.e., cured, uncured) is an important challenge for cure models. It is customary to assume no additional information on the
cure status of censored individuals, thus, to model the cure status as a latent variable.

Nonetheless, there are situations where some of the censored individuals can be identified to be immune to the event of interest,
that is, to be cured. For example, diagnostic procedures in medical studies can provide further information on whether a subject will
not die from a curable illness. Also, for some types of cancer, it is extremely unlikely to have any recurrence later than a given time
after treatment, known as cure threshold. In these situations, there are three groups of observations: the event times of individuals
experiencing the event during the follow-up time; the regular censored times of those who neither experienced the event nor were
classified as cured; and a new third group, the cured (censored) times of those acknowledged as cured from the event. Just modeling the
data under the usual cure model framework, that considers the cured times as simple regular censored times, will not take advantage of
this additional cure status information given by the third group.

Few authors have studied cure models from a nonparametric point of view when the cure status is known for some censored
observations. Nonparametric cure probability estimation with random cure status partially available was discussed without covariates
by Laska and Meisner (1982) when cure is observed based on a cure threshold, and Betensky and Schoenfeld (2001) with random
observed cures using a competing risk approach. In a conditional setting with covariates, kernel estimators of the survival function, cure
probability and latency functions have been proposed in Safari et al. (2021), Safari et al. (2022) and Safari et al. (2023).

npcurePK

Overview of the package. npcurePK is an R package that implements the estimators of the survival function, latency function and
probability of cure in a mixture cure model when the cure is partially observed (Safari et al., 2021, 2022, 2023). These estimators are
based on kernel smoothing ideas, using Nadaraya-Watson weights computed with a bandwidth h, that must be previously selected. In
the absence of the optimal value for the bandwidth, a bandwidth selector based on the bootstrap is included in the package.

The package consist of three main R functions: prodlim_curepk() for the estimation of the conditional survival function S(t | x),
prob_curepk() for the estimation of the cure probability 1 − p(x), and latency_curepk() for the latency function S0(t | x). Its
arguments are the observed covariate values x, the observed times t, the uncensoring indicator d, and the indicator of the individual
known to be cured xinu. In addition, the argument x0 specifies the value of the covariate where the functions are to be estimated.

The bandwidth h used in the Nadaraya-Watson weights can be set by the argument h. When the functions are estimated in a vector of
values x0, then argument local states if the estimations in each value of x0 are computed with the corresponding value of h (local =
TRUE) of with all the values of h (local = FALSE).

If argument h is missing, then the bootstrap bandwidth selector for h is used instead. The list of parameters controlling the bootstrap
when computing the bootstrap bandwidths includes the number of bootstrap resamples B (by default, B = 100), the fraction of the
sample size that determines the order of the nearest neighbor used for choosing a pilot bandwidth nnfrac (by default, nnfrac = 0.25),
the length of the grid where the bootstrap bandwidth is searched hl (by default, hl = 30), and the times hbound the standardized
interquartile range of the covariate values are multiplied to get the search grid of bandwidths (by default, hbound = c(0.1, 3)). These
default values are returned by the controlpars() function called without arguments.
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Using the package. For illustration purposes, the package includes the real data set sarcoma related to 232 patients diagnosed with
sarcoma. Sarcoma is a rare type of cancer that represents 1% of all adult solid malignancies (Choy, 2014). If a tumor can be surgically
removed to render the patient with sarcoma free of detectable disease, 5 years is the survival time at which sarcoma oncologists assume
long-term remissions. Patients tumor free and alive for more than 5 years were assumed to be long-term survivors. The variables included
in the data set are the age at diagnosis x, the observed time until death from sarcoma t, the censoring status d (0 = censored, 1 = death
from sarcoma) and the cure status xinu (0 = dead or unknown, 1 = tumor free and alive for more than 5 years).

The following code illustrates a typical call:

library(npcurePK)

First, the survival function S(t | x) is estimated for patients aged 40 and 90 years old, using the bootstrap bandwidth selector:

S <- prodlim_curepk(x, t, d, xinu, sarcoma, x0 = c(40, 90))
plot(S$t, S$surv[, 1], type = "s", xlab = "Time", ylab = "Survival probability", ylim = c(0, 1))
lines(S$t, S$surv[, 2], type = "s")
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Next, the latency function S0(t | x) is computed for patients aged 60 years old. The computation of the latency estimator in the
covariate value x0 is based on suitable estimates of 1− p(x0) and S(t | x0). As a consequence, this latency estimator requires a bivariate
bandwidth h with dimension (2 × length(x0)), so h[1, ] is used for estimating 1− p(x) at x0, and h[2, ] is used for estimating
S(t | x) at x0.

In the next lines, the latency estimator is computed using a bootstrap bandwidth h. This bandwidth is searched using 2 cores, in a
grid of 10 × 10 bandwidths (hl = 10) between 0.2 and 2 times the standardized interquartile range of the covariate values (hbound =
c(0.1, 2)), using 50 bootstrap resamples (b = 50). The latency estimates are saved in an array of dimension (n× length(x0)).

S0 <- latency_curepk(x, t, d, xinu, sarcoma, x0 = 60,
bootpars = controlpars(b = 50, hl = 10, ncores = 2, hbound = c(0.1, 2)))

plot(S0$t, S0$latency[, 1], type = "s", xlab = "Time", ylab = "Latency function", ylim = c(0, 1))
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Finally, the cure rate 1− p(x) is estimated for a vector of 50 values x0 of the covariate age (X ) ranged between the minimum and
maximum observed age of the patients:

x0 <- seq(from = min(sarcoma$x), to = max(sarcoma$x), length.out = 50)

If the estimation of the cure rate 1− p(x) in the values x0 is performed with the same bandwidth h provided by the user for all the
values in x0, then the bandwidth h is global (argument local = FALSE). The code below computes the cure rate estimator with a set of
3 different fixed global bandwidths h = c(20, 25, 30):

p <- prob_curepk(x, t, d, xinu, sarcoma, x0 = x0, h = c(20, 25, 30), local = FALSE)

The estimated cure rates 1 − p(x), evaluated in the 50 values of the vector x0, and computed with any of the 3 values for the
bandwidth h, are given in a matrix p$prob_cure of dimension (3 × length(x0)). The estimates are represented with a line graph:

plot(p$x0, p$prob_cure[1, ], xlab = "Age", type = "l", ylab = "Probability of cure", ylim = c(0, 1))
lines(p$x0, p$prob_cure[2, ], lwd = 1.5)
lines(p$x0, p$prob_cure[3, ], lwd = 3)
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More efficient results are expected if a different bandwidth h is used for the estimation of the cure rate 1− p(x) in each value of the
vector x0. In this case, a vector of values for the bandwidth h, with the same length as x0, must be provided by the user, with argument
local = TRUE.

The cure probability 1− p(x) can also be estimated in each value of the vector x0 using a different bandwidth h for each value of
x0, if the bandwidth is selected by the bootstrap. The following code illustrates the estimation using 2 cores, when the bootstrap is
performed with b = 50 bootstrap resamples (seed is only needed for repeatability):

library(doParallel)

# Loading required package: foreach

# Loading required package: iterators

# Loading required package: parallel

p2 <- prob_curepk(x, t, d, xinu, sarcoma, x0 = x0,
bootpars = controlpars(b = 50, ncores = 2, seed = 123))

plot(p2$x0, p2$prob_cure, xlab = "Age", type = "l", ylab = "Probability of cure", ylim = c(0, 1))
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Final comments. When there are no individuals known to be cured (xinu = 0), then the usual kernel estimators of the survival function
(Beran, 1981), the latency function (López-Cheda et al., 2017b) and the cure rate (López-Cheda et al., 2017a; Xu and Peng, 2014) are
computed.
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