
Package ‘piar’
March 8, 2024

Title Price Index Aggregation

Version 0.7.0

Description Most price indexes are made with a two-step procedure, where
period-over-period elemental indexes are first calculated for a collection
of elemental aggregates at each point in time, and then aggregated according
to a price index aggregation structure. These indexes can then be chained
together to form a time series that gives the evolution of prices with
respect to a fixed base period. This package contains a collections of
functions that revolve around this work flow, making it easy to build
standard price indexes, and implement the methods described by
Balk (2008, ISBN:978-1-107-40496-0), von der Lippe (2001,
ISBN:3-8246-0638-0), and the CPI manual (2020, ISBN:978-1-51354-298-0)
for bilateral price indexes.

Depends R (>= 4.0)

Imports stats, utils, gpindex (>= 0.5.0), Matrix (>= 1.5-0)

Suggests rmarkdown, knitr, sps, testthat (>= 3.0.0)

License MIT + file LICENSE

Encoding UTF-8

URL https://marberts.github.io/piar/, https://github.com/marberts/piar

BugReports https://github.com/marberts/piar/issues

LazyData true

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.1

NeedsCompilation no

Author Steve Martin [aut, cre, cph] (<https://orcid.org/0000-0003-2544-9480>)

Maintainer Steve Martin <marberts@protonmail.com>

Repository CRAN

Date/Publication 2024-03-08 17:30:02 UTC

1

https://marberts.github.io/piar/
https://github.com/marberts/piar
https://github.com/marberts/piar/issues
https://orcid.org/0000-0003-2544-9480

2 aggregate.piar_index

R topics documented:
aggregate.piar_index . 2
aggregation_structure . 5
as.data.frame.piar_index . 6
as.matrix.piar_aggregation_structure . 7
as_aggregation_structure . 9
as_index . 10
chain . 12
contrib . 14
elemental_index . 15
expand_classification . 18
head.piar_index . 20
impute_prices . 21
is.na.piar_index . 23
is_aggregation_structure . 24
is_index . 24
levels.piar_aggregation_structure . 25
levels.piar_index . 25
mean.piar_index . 26
merge.piar_index . 27
piar_index . 28
price_data . 29
price_relative . 29
split.piar_index . 30
stack.piar_index . 31
summary.piar_index . 32
time.piar_index . 33
update.piar_aggregation_structure . 34
vcov.aggregate_piar_index . 35
weights.piar_aggregation_structure . 37
[.piar_index . 38

Index 41

aggregate.piar_index Aggregate elemental price indexes

Description

Aggregate elemental price indexes with a price index aggregation structure.

Usage

S3 method for class 'chainable_piar_index'
aggregate(x, pias, ..., na.rm = FALSE, contrib = TRUE, r = 1)

S3 method for class 'direct_piar_index'
aggregate(x, pias, ..., na.rm = FALSE, contrib = TRUE, r = 1)

aggregate.piar_index 3

Arguments

x A price index, usually made by elemental_index().

pias A price index aggregation structure or something that can be coerced into one.
This can be made with aggregation_structure().

... Not currently used.

na.rm Should missing values be removed? By default, missing values are not removed.
Setting na.rm = TRUE is equivalent to overall mean imputation.

contrib Aggregate percent-change contributions in x (if any)?

r Order of the generalized mean to aggregate index values. 0 for a geometric index
(the default for making elemental indexes), 1 for an arithmetic index (the default
for aggregating elemental indexes and averaging indexes over subperiods), or -1
for a harmonic index (usually for a Paasche index). Other values are possible;
see gpindex::generalized_mean() for details.

Details

The aggregate() method loops over each time period in x and

1. aggregates the elemental indexes with gpindex::generalized_mean(r)() for each level of
pias;

2. aggregates percent-change contributions for each level of pias (if there are any and contrib
= TRUE);

3. price updates the weights in pias with gpindex::factor_weights(r)() (only for period-
over-period elemental indexes).

The result is a collection of aggregated period-over-period indexes that can be chained together to
get a fixed-base index when x are period-over-period elemental indexes. Otherwise, when x are
fixed-base elemental indexes, the result is a collection of aggregated fixed-base (direct) indexes.

By default, missing elemental indexes will propagate when aggregating the index. Missing ele-
mental indexes can be due to both missingness of these values in x, and the presence of elemental
aggregates in pias that are not part of x. Setting na.rm = TRUE ignores missing values, and is equiv-
alent to parental (or overall mean) imputation. As an aggregated price index generally cannot have
missing values (for otherwise it can’t be chained over time and weights can’t be price updated),
any missing values for a level of pias are removed and recursively replaced by the value of its
immediate parent.

In most cases aggregation is done with an arithmetic mean (the default), and this is detailed in
chapter 8 (pp. 190–198) of the CPI manual (2020). Aggregating with a non-arithmetic mean follows
the same steps, except that the elemental indexes are aggregated with a mean of a different order
(e.g., harmonic for a Paasche index), and the method for price updating the weights is slightly
different. Note that, because aggregation is done with a generalized mean, the resulting index is
consistent-in-aggregation at each point in time.

Aggregating percent-change contributions uses the method in chapter 9 of the CPI manual (equa-
tions 9.26 and 9.28) when aggregating with an arithmetic mean. With a non-arithmetic mean, arith-
metic weights are constructed using gpindex::transmute_weights(r, 1)() in order to apply this
method.

4 aggregate.piar_index

There may not be contributions for all prices relatives in an elemental aggregate if the elemental
indexes are built from several sources (as with merge()). In this case the contribution for a price
relative in the aggregated index will be correct, but the sum of all contributions will not equal the
change in the value of the index. This can also happen when aggregating an already aggregated
index in which missing index values have been imputed (i.e., when na.rm = TRUE).

Value

An aggregate price index that inherits from aggregate_piar_index and the class of x.

Note

For large indexes it can be much faster to turn the aggregation structure into an aggregation ma-
trix with as.matrix(), then aggregate elemental indexes as a matrix operation when there are no
missing values. See the examples for details.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). Consumer Price Index Manual: Theory
and Practice. International Monetary Fund.

See Also

Other index methods: [.piar_index(), as.data.frame.piar_index(), chain(), contrib(),
head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(), merge.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

A two-level aggregation structure

pias <- aggregation_structure(
list(c("top", "top", "top"), c("a", "b", "c")), 1:3

)

Calculate Jevons elemental indexes

(elemental <- with(prices, elemental_index(rel, period, ea)))

Aggregate (note the imputation for elemental index 'c')

(index <- aggregate(elemental, pias, na.rm = TRUE))

Aggregation can equivalently be done as matrix multiplication

aggregation_structure 5

as.matrix(pias) %*% as.matrix(chain(index[letters[1:3]]))

aggregation_structure Make a price index aggregation structure

Description

Create a price index aggregation structure from a hierarchical classification and aggregation weights
that can be used to aggregate elemental indexes.

Usage

aggregation_structure(x, weights = NULL)

Arguments

x A list of character vectors that give the codes/labels for each level of the classi-
fication, ordered so that moving down the list goes down the hierarchy. The last
vector gives the elemental aggregates, which should have no duplicates. All vec-
tors should be the same length, without NAs, and there should be no duplicates
across different levels of x.

weights A numeric vector of aggregation weights for the elemental aggregates (i.e., the
last vector in x), or something that can be coerced into one. The default is to
give each elemental aggregate the same weight.

Value

A price index aggregation structure of class piar_aggregation_structure. This is a list-S3 class
with the following components.

child A nested list that gives the positions of the immediate children for each node in
each level of the aggregation structure above the terminal nodes.

parent A list that gives the position of the immediate parent for each node of the aggre-
gation structure below the initial nodes.

levels A list of character vectors that give the levels of x.

weights A named vector giving the weight for each elemental aggregate.

Warning

The aggregation_structure() function does its best to check its arguments, but there should
be no expectation that the result of aggregation_structure() will make any sense if x does not
represent a nested hierarchy.

6 as.data.frame.piar_index

See Also

aggregate() to aggregate price indexes made with elemental_index().

expand_classification() to make x from a character representation of a hierarchical aggregation
structure.

as_aggregation_structure() to coerce tabular data into an aggregation structure.

as.data.frame() and as.matrix() to coerce an aggregation structure into a tabular form.

weights() to get the weights for an aggregation structure.

update() for updating a price index aggregation structure with an aggregated index.

Examples

A simple aggregation structure
1
|-----+-----|
11 12
|---+---| |
111 112 121
(1) (3) (4)

aggregation_weights <- data.frame(
level1 = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

aggregation_structure(
aggregation_weights[1:3],
weights = aggregation_weights[[4]]

)

The aggregation structure can also be made by expanding the
elemental aggregates

with(
aggregation_weights,
aggregation_structure(expand_classification(ea), weight)

)

as.data.frame.piar_index

Coerce an index into a tabular form

Description

Turn an index into a data frame or a matrix.

as.matrix.piar_aggregation_structure 7

Usage

S3 method for class 'piar_index'
as.data.frame(x, ..., stringsAsFactors = FALSE)

S3 method for class 'piar_index'
as.matrix(x, ...)

Arguments

x A price index, as made by, e.g., elemental_index().

... Not currently used.

stringsAsFactors

See as.data.frame().

Value

as.data.frame() returns a data frame with three columns: period, level, and value.

as.matrix() returns a matrix with a row for each level and a column for each time period.

See Also

as_index() to coerce a matrix/data frame of index values into an index object.

Other index methods: [.piar_index(), aggregate.piar_index(), chain(), contrib(), head.piar_index(),
is.na.piar_index(), levels.piar_index(), mean.piar_index(), merge.piar_index(), split.piar_index(),
stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index <- as_index(matrix(1:6, 2))

as.data.frame(index)
as.matrix(index)

as.matrix.piar_aggregation_structure

Coerce an aggregation structure into a tabular form

Description

Coerce a price index aggregation structure into an aggregation matrix, or a data frame.

8 as.matrix.piar_aggregation_structure

Usage

S3 method for class 'piar_aggregation_structure'
as.matrix(x, ..., sparse = FALSE)

S3 method for class 'piar_aggregation_structure'
as.data.frame(x, ..., stringsAsFactors = FALSE)

Arguments

x A price index aggregation structure, as made by aggregation_structure().

... Not currently used.

sparse Should the result be a sparse matrix from Matrix? This is faster for large aggre-
gation structures. The default returns an ordinary dense matrix.

stringsAsFactors

See as.data.frame().

Value

as.matrix() represents an aggregation structure as a matrix, such that multiplying with a (column)
vector of elemental indexes gives the aggregated index.

as.data.frame() takes an aggregation structure and returns a data frame that could have generated
it, with columns level1, level2, ..., ea, and weight.

See Also

as_aggregation_structure() for coercing into an aggregation structure.

Other aggregation structure methods: levels.piar_aggregation_structure(), update.piar_aggregation_structure(),
weights.piar_aggregation_structure()

Examples

A simple aggregation structure
1
|-----+-----|
11 12
|---+---| |
111 112 121
(1) (3) (4)

aggregation_weights <- data.frame(
level1 = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

pias <- as_aggregation_structure(aggregation_weights)

as.matrix(pias)

as_aggregation_structure 9

all.equal(as.data.frame(pias), aggregation_weights)

as_aggregation_structure

Coerce to an aggregation structure

Description

Coerce an object into an aggregation structure object.

Usage

as_aggregation_structure(x, ...)

Default S3 method:
as_aggregation_structure(x, weights = NULL, ...)

S3 method for class 'data.frame'
as_aggregation_structure(x, ...)

S3 method for class 'matrix'
as_aggregation_structure(x, ...)

S3 method for class 'aggregate_piar_index'
as_aggregation_structure(x, weights = NULL, ...)

Arguments

x An object to coerce into an aggregation structure.

... Further arguments passed to or used by methods.

weights A numeric vector of aggregation weights for the elemental aggregates. The
default is to give each elemental aggregate the same weight.

Details

The default method attempts to coerce x into a list prior to calling aggregation_structure().

The data frame and matrix methods treat x as a table with a row for each elemental aggregate,
a column of labels for each level in the aggregation structure, and a column of weights for the
elemental aggregates.

The method for aggregate indexes reconstructs the aggregation structure used to generate the index
(with optional weights).

Value

A price index aggregation structure that inherits from piar_aggregation_structure.

10 as_index

See Also

as.matrix() and as.data.frame() for coercing an aggregation structure into a tabular form.

Examples

A simple aggregation structure
1
|-----+-----|
11 12
|---+---| |
111 112 121
(1) (3) (4)

aggregation_weights <- data.frame(
level1 = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

pias <- aggregation_structure(
aggregation_weights[1:3],
weights = aggregation_weights[[4]]

)

all.equal(
pias,
as_aggregation_structure(aggregation_weights)

)

all.equal(
pias,
as_aggregation_structure(as.matrix(aggregation_weights))

)

as_index Coerce to a price index

Description

Coerce pre-computed index values into an index object.

Usage

as_index(x, ...)

Default S3 method:
as_index(x, ..., chainable = TRUE)

as_index 11

S3 method for class 'matrix'
as_index(x, ..., chainable = TRUE)

S3 method for class 'data.frame'
as_index(x, cols = NULL, ..., chainable = TRUE)

S3 method for class 'chainable_piar_index'
as_index(x, ..., chainable = TRUE)

S3 method for class 'direct_piar_index'
as_index(x, ..., chainable = FALSE)

Arguments

x An object to coerce into a price index.
... Further arguments passed to or used by methods.
chainable Are the index values in x period-over-period indexes, suitable for a chained cal-

culation (the default)? This should be FALSE when x is a fixed-base (direct)
index.

cols Deprecated. A vector giving the positions/names of the period, level, and value
columns in x. The default assumes that the first column contains time periods,
the second contains levels, and the third contains index values.

Details

Numeric matrices are coerced into an index object by treating each column as a separate time period,
and each row as a separate level of the index (e.g., an elemental aggregate). Column names are used
to denote time periods, and row names are used to denote levels (so they must be unique). This
essentially reverses calling as.matrix() on an index object. If a dimension is unnamed, then it is
given a sequential label from 1 to the size of that dimension. The default method coerces x to a
matrix prior to using the matrix method.
The data frame method for as_index() is best understood as reversing the effect of as.data.frame()
on an index object. It constructs a matrix by taking the levels of x[[1]] as columns and the lev-
els of x[[2]] as rows (coercing to a factor if necessary). It then populates this matrix with the
corresponding values in x[[3]], and uses the matrix method for as_index().
If x is a period-over-period index then it is returned unchanged when chainable = TRUE and chained
otherwise. Similarly, if x is a fixed-base index then it is returned unchanged when chainable =
FALSE and unchain otherwise.

Value

as_index() returns a price index that inherits from piar_index. If chainable = TRUE then this is
a period-over-period price index that also inherits from chainable_piar_index; otherwise, it is a
fixed-base index that inherits from direct_piar_index.

See Also

as.matrix() and as.data.frame() for coercing an index into a tabular form.

12 chain

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

index <- with(prices, elemental_index(rel, period, ea))

all.equal(as_index(as.data.frame(index)), index)
all.equal(as_index(as.matrix(index)), index)

chain Chain and rebase a price index

Description

Chain a period-over-period index by taking the cumulative product of its values to turn it into a
fixed-base (direct) index.

Unchain a fixed-base index by dividing its values for successive periods to get a period-over-period
index.

Rebase a fixed-base index by dividing its values with the value of the index in the new base period.

Usage

chain(x, ...)

Default S3 method:
chain(x, ...)

S3 method for class 'chainable_piar_index'
chain(x, link = rep(1, nlevels(x)), ...)

unchain(x, ...)

Default S3 method:
unchain(x, ...)

S3 method for class 'direct_piar_index'
unchain(x, ...)

rebase(x, ...)

Default S3 method:
rebase(x, ...)

chain 13

S3 method for class 'direct_piar_index'
rebase(x, base = rep(1, nlevels(x)), ...)

Arguments

x A price index, as made by, e.g., elemental_index().

... Further arguments passed to or used by methods.

link A numeric vector, or something that can coerced into one, of link values for each
level in x. The default is a vector of 1s so that no linking is done.

base A numeric vector, or something that can coerced into one, of base-period index
values for each level in x. The default is a vector of 1s so that the base period
remains the same.

Details

The default methods attempt to coerce x into an index with as_index() prior to chaining/unchaining/rebasing.

Chaining an index takes the cumulative product of the index values for each level; this is roughly
the same as t(apply(as.matrix(x), 1, cumprod)) * link. Unchaining does the opposite, so
these are inverse operations. Note that unchaining a period-over-period index does nothing, as does
chaining a fixed-base index.

Rebasing a fixed-base index divides the values for each level of this index by the corresponding
values for each level in the new base period. It’s roughly the same as as.matrix(x) / base. Like
unchaining, rebasing a period-over-period index does nothing.

Percent-change contributions are removed when chaining/unchaining/rebasing an index, as it’s not
usually possible to update them correctly.

Value

chain() and rebase() return a fixed-base index that inherits from direct_piar_index.

unchain() returns a period-over-period index that inherits from chainable_piar_index.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index <- as_index(matrix(1:9, 3))

Make period 0 the fixed base period

chain(index)

Chaining and unchaining reverse each other

all.equal(index, unchain(chain(index)))

14 contrib

Change the base period to period 2 (note the
loss of information for period 0)

index <- chain(index)
rebase(index, index[, 2])

contrib Extract percent-change contributions

Description

Extract a matrix of percent-change contributions from a price index.

Usage

contrib(x, ...)

S3 method for class 'piar_index'
contrib(x, level = levels(x)[1L], period = time(x), ..., pad = 0)

Arguments

x A price index, as made by, e.g., elemental_index().

... Further arguments passed to or used by methods.

level The level of an index for which percent-change contributions are desired, de-
faulting to the first level (usually the top-level for an aggregate index).

period The time periods for which percent-change contributions are desired, defaulting
to all time periods.

pad A numeric value to pad contributions so that they fit into a rectangular array
when products differ over time. The default is 0.

Value

A matrix of percent-change contributions with a column for each period and a row for each product
(sorted) for which there are contributions in level. Contributions are padded with pad to fit into a
rectangular array when products differ over time.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

elemental_index 15

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

index <- with(
prices,
elemental_index(rel, period, ea, contrib = TRUE)

)

pias <- aggregation_structure(
list(c("top", "top", "top"), c("a", "b", "c")), 1:3

)

index <- aggregate(index, pias, na.rm = TRUE)

Percent-change contributions for the top-level index

contrib(index)

Calculate EA contributions for the chained index

library(gpindex)

arithmetic_contributions(
as.matrix(chain(index))[c("a", "b", "c"), 2],
weights(pias)

)

elemental_index Make elemental price indexes

Description

Compute period-over-period (chainable) or fixed-base (direct) elemental price indexes, with op-
tional percent-change contributions.

Usage

elemental_index(x, ...)

Default S3 method:
elemental_index(x, ...)

S3 method for class 'numeric'
elemental_index(

16 elemental_index

x,
period = gl(1, length(x)),
ea = gl(1, length(x)),
weights = NULL,
...,
chainable = TRUE,
na.rm = FALSE,
contrib = FALSE,
r = 0

)

Arguments

x Period-over-period or fixed-base price relatives. Currently there is only a method
for numeric vectors; these can be made with price_relative().

... Further arguments passed to or used by methods.

period A factor, or something that can be coerced into one, giving the time period
associated with each price relative in x. The ordering of time periods follows
of the levels of period, to agree with cut(). The default assumes that all price
relatives belong to one time period.

ea A factor, or something that can be coerced into one, giving the elemental aggre-
gate associated with each price relative in x. The default assumes that all price
relatives belong to one elemental aggregate.

weights A numeric vector of weights for the price relatives in x, or something that can
be coerced into one. The default is equal weights.

chainable Are the price relatives in x period-over-period relatives that are suitable for a
chained calculation (the default)? This should be FALSE when x contains fixed-
base relatives.

na.rm Should missing values be removed? By default, missing values are not removed.
Setting na.rm = TRUE is equivalent to overall mean imputation.

contrib Should percent-change contributions be calculated? The default does not calcu-
late contributions.

r Order of the generalized mean to aggregate price relatives. 0 for a geometric
index (the default for making elemental indexes), 1 for an arithmetic index (the
default for aggregating elemental indexes and averaging indexes over subperi-
ods), or -1 for a harmonic index (usually for a Paasche index). Other values are
possible; see gpindex::generalized_mean() for details.

Details

When supplied with a numeric vector, elemental_index() is a simple wrapper that applies gpindex::generalized_mean(r)()
and gpindex::contributions(r)() (if contrib = TRUE) to x and weights grouped by ea and
period. That is, for every combination of elemental aggregate and time period, elemental_index()
calculates an index based on a generalized mean of order r and, optionally, percent-change contri-
butions. The default (r = 0 and no weights) makes Jevons elemental indexes. See chapter 8 (pp.
175–190) of the CPI manual (2020) for more detail about making elemental indexes, and chapter 5
of Balk (2008).

elemental_index 17

The default method simply coerces x to a numeric vector prior to calling the method above.

Names for x are used as product names when calculating percent-change contributions. Product
names should be unique within each time period, and, if not, are passed to make.unique() with a
warning. If x has no names then elements of x are given sequential names within each elemental
aggregate.

The interpretation of the index depends on how the price relatives in x are made. If these are
period-over-period relatives, then the result is a collection of period-over-period (chainable) ele-
mental indexes; if these are fixed-base relatives, then the result is a collection of fixed-base (direct)
elemental indexes. For the latter, chainable should be set to FALSE so that no subsequent methods
assume that a chained calculation should be used.

By default, missing price relatives in x will propagate throughout the index calculation. Ignoring
missing values with na.rm = TRUE is the same as overall mean (parental) imputation, and needs to
be explicitly set in the call to elemental_index(). Explicit imputation of missing relatives, and
especially imputation of missing prices, should be done prior to calling elemental_index().

Indexes based on nested generalized means, like the Fisher index (and superlative quadratic mean
indexes more generally), can be calculated by supplying the appropriate weights with gpindex::nested_transmute();
see the example below. It is important to note that there are several ways to make these weights,
and this affects how percent-change contributions are calculated.

Value

A price index that inherits from piar_index. If chainable = TRUE then this is a period-over-period
index that also inherits from chainable_piar_index; otherwise, it is a fixed-based index that
inherits from direct_piar_index.

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). Consumer Price Index Manual: Theory
and Practice. International Monetary Fund.

See Also

price_relative() for making price relatives for the same products over time, and carry_forward()
and shadow_price() for imputation of missing prices.

as_index() to turn pre-computed (elemental) index values into an index object.

chain() for chaining period-over-period indexes, and rebase() for rebasing an index.

aggregate() to aggregate elemental indexes according to an aggregation structure.

as.matrix() and as.data.frame() for coercing an index into a tabular form.

Examples

library(gpindex)

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),

18 expand_classification

ea = rep(letters[1:2], 4)
)

Calculate Jevons elemental indexes

with(prices, elemental_index(rel, period, ea))

Same as using lm() or tapply()

exp(coef(lm(log(rel) ~ ea:factor(period) - 1, prices)))

with(
prices,
t(tapply(rel, list(period, ea), geometric_mean, na.rm = TRUE))

)

A general function to calculate weights to turn the geometric
mean of the arithmetic and harmonic mean (i.e., Fisher mean)
into an arithmetic mean

fw <- grouped(nested_transmute(0, c(1, -1), 1))

Calculate a CSWD index (same as the Jevons in this example)
as an arithmetic index by using the appropriate weights

with(
prices,
elemental_index(

rel, period, ea,
fw(rel, group = interaction(period, ea)),
r = 1

)
)

expand_classification Expand a hierarchical classification

Description

Expand a character representation of a hierarchical classification to make a price index aggregation
structure.

Usage

expand_classification(x, width = 1L)

expand_classification 19

Arguments

x A character vector, or something that can be coerced into one, of codes/labels for
a specific level in a classification (e.g., 5-digit COICOP, 5-digit NAICS, 4-digit
SIC).

width An integer vector that gives the width of each digit in x. A single value is re-
cycled to span the longest element in x. This cannot contain NAs. The default
assumes each digit has a width of 1, as in the NAICS, NAPCS, and SIC classi-
fications.

Value

A list with a entry for each level in x giving the "digits" that represent each level in the hierarchy.

See Also

aggregation_structure() to make a price-index aggregation structure.

Examples

A simple classification structure
1
|-----+-----|
11 12
|---+---| |
111 112 121

expand_classification(c("111", "112", "121"))

Expanding more complex classifications
... if last 'digit' is either TA or TS

expand_classification(
c("111TA", "112TA", "121TS"),
width = c(1, 1, 1, 2)

)

... if first 'digit' is either 11 or 12

expand_classification(c("111", "112", "121"), width = c(2, 1))

...if there are delimiters in the classification (like COICOP)

expand_classification(c("01.1.1", "01.1.2", "01.2.1"), width = 2)

20 head.piar_index

head.piar_index Return the first/last parts of an index

Description

Extract the first/last parts of an index as if it were a matrix.

Usage

S3 method for class 'piar_index'
head(x, n = 6L, ...)

S3 method for class 'piar_index'
tail(x, n = 6L, ...)

Arguments

x A price index, as made by, e.g., elemental_index().

n See head()/tail(). The default takes the first/last 6 levels of x.

... Not currently used.

Value

A price index that inherits from chainable_piar_index if x is a period-over-period index, or
direct_piar_index() if x is a fixed-base index.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), is.na.piar_index(), levels.piar_index(), mean.piar_index(), merge.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index <- as_index(matrix(1:9, 3))

head(index, 1)

tail(index, 1)

impute_prices 21

impute_prices Impute missing prices

Description

Impute missing prices using the carry forward or shadow price method.

Usage

shadow_price(
x,
period,
product,
ea,
pias = NULL,
weights = NULL,
r1 = 0,
r2 = 1

)

carry_forward(x, period, product)

carry_backwards(x, period, product)

Arguments

x A numeric vector of prices, or something that can be coerced into one.

period A factor, or something that can be coerced into one, giving the time period
associated with each price in x. The ordering of time periods follows of the
levels of period, to agree with cut().

product A factor, or something that can be coerced into one, giving the product associ-
ated with each price in x.

ea A factor, or something that can be coerced into one, giving the elemental aggre-
gate associated with each price in x.

pias A price index aggregation structure, or something that can be coerced into one,
as made with aggregation_structure(). The default imputes from elemental
indexes only (i.e., not recursively).

weights A numeric vector of weights for the prices in x (i.e., product weights), or some-
thing that can be coerced into one. The default is to give each price equal weight.

r1 Order of the generalized-mean price index used to calculate the elemental price
indexes: 0 for a geometric index (the default), 1 for an arithmetic index, or -1 for
a harmonic index. Other values are possible; see gpindex::generalized_mean()
for details.

22 impute_prices

r2 Order of the generalized-mean price index used to aggregate the elemental price
indexes: 0 for a geometric index, 1 for an arithmetic index (the default), or -1 for
a harmonic index. Other values are possible; see gpindex::generalized_mean()
for details.

Details

The carry forward method replaces a missing price for a product by the price for the same product in
the previous period. It tends to push an index value towards 1, and is usually avoided; see paragraph
6.61 in the CPI manual (2020). The carry backwards method does the opposite, but this is rarely
used in practice.

The shadow price method recursively imputes a missing price by the value of the price for the same
product in the previous period multiplied by the value of the period-over-period elemental index for
the elemental aggregate to which that product belongs. This requires computing and aggregating an
index (according to pias, unless pias is not supplied) for each period, and so these imputations
can take a while. The index values used to do the imputations are not returned because the index
needs to be recalculated to get correct percent-change contributions.

Shadow price imputation is referred to as self-correcting overall mean imputation in chapter 6 of
the CPI manual (2020). It is identical to simply excluding missing price relatives in the index
calculation, except in the period that a missing product returns. For this reason care is needed when
using this method. It is sensitive to the assumption that a product does not change over time, and
in some cases it is safer to simply omit the missing price relatives instead of imputing the missing
prices.

Value

A copy of x with missing values replaced (where possible).

References

ILO, IMF, OECD, Eurostat, UN, and World Bank. (2020). Consumer Price Index Manual: Theory
and Practice. International Monetary Fund.

See Also

price_relative() for making price relatives for the same products over time.

Examples

prices <- data.frame(
price = c(1:7, NA),
period = rep(1:2, each = 4),
product = 1:4,
ea = rep(letters[1:2], 4)

)

with(prices, carry_forward(price, period, product))

with(prices, shadow_price(price, period, product, ea))

is.na.piar_index 23

is.na.piar_index Missing values in a price index

Description

Identify missing values in a price index.

Usage

S3 method for class 'piar_index'
is.na(x)

S3 method for class 'piar_index'
anyNA(x, recursive = FALSE)

Arguments

x A price index, as made by, e.g., elemental_index().

recursive Check if x also has missing percent-change contributions. By default only index
values are checked for missingness.

Value

is.na() returns a logical matrix, with a row for each level of x and a columns for each time period,
that indicates which index values are missing.

anyNA() returns TRUE if any index values are missing, or percent-change contributions (if recursive
= TRUE).

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), levels.piar_index(), mean.piar_index(), merge.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index <- as_index(matrix(c(1, 2, 3, NA, 5, NA), 2))

anyNA(index)
is.na(index)

Carry forward imputation

index[is.na(index)] <- 1
index

24 is_index

is_aggregation_structure

Test if an object is an aggregation structure

Description

Test if an object is a price index aggregation structure.

Usage

is_aggregation_structure(x)

Arguments

x An object to test.

Value

Returns TRUE if x inherits from piar_aggregation_structure.

is_index Test if an object is a price index

Description

Test if an object is a index object, or a subclass of an index object.

Usage

is_index(x)

is_aggregate_index(x)

is_chainable_index(x)

is_direct_index(x)

Arguments

x An object to test.

Value

is_index() returns TRUE if x inherits from piar_index.

is_chainable_index() returns TRUE if x inherits from chainable_piar_index.

is_direct_index() returns TRUE if x inherits from direct_piar_index.

is_aggregate_index() returns TRUE if x inherits from aggregate_piar_index.

levels.piar_aggregation_structure 25

levels.piar_aggregation_structure

Get the levels for an aggregation structure

Description

Get the hierarchical list of levels for an aggregation structure. It is an error to try and replace these
values.

Usage

S3 method for class 'piar_aggregation_structure'
levels(x)

Arguments

x A price index aggregation structure, as made by aggregation_structure().

Value

A list of character vectors giving the levels for each position in the aggregation structure.

See Also

Other aggregation structure methods: as.matrix.piar_aggregation_structure(), update.piar_aggregation_structure(),
weights.piar_aggregation_structure()

levels.piar_index Get the levels for a price index

Description

Methods to get and set the levels for a price index.

Usage

S3 method for class 'piar_index'
levels(x)

S3 replacement method for class 'piar_index'
levels(x) <- value

Arguments

x A price index, as made by, e.g., elemental_index().
value A character vector, or something that can be coerced into one, giving the re-

placement levels for x.

26 mean.piar_index

Value

levels() returns a character vector with the levels for a price index.

The replacement method returns a copy of x with the levels in value.

It’s not generally possible to change the levels of an aggregate price index, and in this case replacing
the levels does not return an aggregate index.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), mean.piar_index(), merge.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

mean.piar_index Aggregate a price index over subperiods

Description

Aggregate an index over subperiods by taking the (usually arithmetic) mean of index values over
consecutive windows of subperiods.

Usage

S3 method for class 'piar_index'
mean(x, weights = NULL, ..., window = 3L, na.rm = FALSE, contrib = TRUE, r = 1)

Arguments

x A price index, as made by, e.g., elemental_index().

weights A numeric vector of weights for the index values in x, or something that can be
coerced into one. The default is equal weights. It is usually easiest to specify
these weights as a matrix with a row for each index value in x and a column for
each time period.

... Not currently used.

window A positive integer giving the size of the window used to average index values
across subperiods. The default (3) turns a monthly index into into a quarterly
one. Non-integers are truncated towards 0.

na.rm Should missing values be removed? By default, missing values are not removed.
Setting na.rm = TRUE is equivalent to overall mean imputation.

contrib Aggregate percent-change contributions in x (if any)?

r Order of the generalized mean to aggregate index values. 0 for a geometric index
(the default for making elemental indexes), 1 for an arithmetic index (the default
for aggregating elemental indexes and averaging indexes over subperiods), or -1
for a harmonic index (usually for a Paasche index). Other values are possible;
see gpindex::generalized_mean() for details.

merge.piar_index 27

Details

The mean() method constructs a set of non-overlapping windows of length window, starting in the
first period of the index, and takes the mean of each index value in these windows for each level of
the index. The last window is discarded if it is incomplete (with a warning), so that index values are
always averaged over window periods. The names for the first time period in each window form the
new names for the aggregated time periods.

Percent-change contributions are aggregated if contrib = TRUE by treating each product-subperiod
pair as a unique product, then following the same approach as aggregate(). The number of the
subperiod is appended to product names to make them unique across subperiods.

An optional vector of weights can be specified when aggregating index values over subperiods,
which is often useful when aggregating a Paasche index; see section 4.3 of Balk (2008) for details.

Value

A price index with the same class as x. If x is an aggregate index and r is different than that used to
aggregate x, then the result is not an aggregate index (as it is no longer consistent in aggregation).

References

Balk, B. M. (2008). Price and Quantity Index Numbers. Cambridge University Press.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), merge.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index <- as_index(matrix(c(1:12, 12:1), 2, byrow = TRUE))

mean(index)

merge.piar_index Merge price indexes

Description

Combine two price indexes with common time periods, merging together the index values and
percent-change contributions for each time period.

This is useful for building up an index when different elemental aggregates come from different
sources of data, or use different index-number formulas.

Usage

S3 method for class 'piar_index'
merge(x, y, ...)

28 piar_index

Arguments

x A price index, as made by, e.g., elemental_index().

y A price index, or something that can coerced into one. If x is a period-over-
period index then y is coerced into a chainable index; otherwise, y is coerced
into a direct index.

... Not currently used.

Value

A price index that inherits from chainable_piar_index if x is a period-over-period index, or
direct_piar_index if x is a fixed-base index. It is not generally possible to merge aggregated
indexes, as this would change the aggregation structure, so merging does not return an aggregated
index.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index1 <- as_index(matrix(1:6, 2))

index2 <- index1
levels(index2) <- 3:4

merge(index1, index2)

piar_index Price index objects

Description

There are several classes to represent price indexes.

• All indexes inherit from the piar_index virtual class.

• Period-over-period indexes that can be chained over time inherit from chainable_piar_index.

• Fixed-base indexes inherit from direct_piar_index.

• Aggregate price indexes that are the result of aggregating elemental indexes with an aggrega-
tion structure further inherit from aggregate_piar_index.

price_data 29

Details

The piar_index object is a list-S3 class with the following components:

index A list with an entry for each period in time that gives a vector of index values for each level
in levels.

contrib A list with an entry for each period in time, which itself contains a list with an entry for
each level in levels with a named vector that gives the additive contribution for each price
relative.

levels A character vector giving the levels of the index.
time A character vector giving the time periods for the index.

The chainable_piar_index and direct_piar_index subclasses have the same structure as the
piar_index class, but differ in the methods used to manipulate the indexes.

The aggregate_piar_index class further subclasses either chainable_piar_index or direct_piar_index,
and adds the following components:

r The order of the generalized mean used to aggregated the index (usually 1).
pias A list containing the child, parent, and levels components of the aggregation structured

used to aggregate the index.

price_data Price data

Description

Sample price and weight data for both a match sample and fixed sample type index.

price_relative Calculate period-over-period price relatives

Description

Construct period-over-period price relatives from information on prices and products over time.

Usage

price_relative(x, period, product)

Arguments

x A numeric vector of prices.
period A factor, or something that can be coerced into one, that gives the corresponding

time period for each element in x. The ordering of time periods follows the levels
of period to agree with cut().

product A factor, or something that can be coerced into one, that gives the corresponding
product identifier for each element in x.

30 split.piar_index

Value

A numeric vector of price relatives, with product as names.

See Also

gpindex::back_period() to get only the back price.

gpindex::base_period() for making fixed-base price relatives.

carry_forward() and shadow_price() to impute missing prices.

gpindex::outliers for methods to identify outliers with price relatives.

Examples

price_relative(1:6, rep(1:2, each = 3), rep(letters[1:3], 2))

split.piar_index Split an index into groups

Description

Split an index into groups of indexes according to a factor, along either the levels or time periods of
the index.

Usage

S3 method for class 'piar_index'
split(x, f, drop = FALSE, ..., margin = c("levels", "time"))

S3 replacement method for class 'piar_index'
split(x, f, drop = FALSE, ..., margin = c("levels", "time")) <- value

Arguments

x A price index, as made by, e.g., elemental_index().

f A factor or list of factors to group elements of x.

drop Should levels that do not occur in f be dropped? By default all levels are kept.

... Further arguments passed to split.default().

margin Either ’levels’ to split over the levels of x (the default), or ’time’ to split over the
time periods of x.

value A list of values compatible with the splitting of x, recycled if necessary.

Value

split() returns a list of index objects for each level in f. The replacement method replaces these
values with the corresponding element of value.

stack.piar_index 31

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
merge.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index <- as_index(matrix(1:6, 2))

split(index, 1:2)

split(index, c(1, 1, 2), margin = "time")

stack.piar_index Stack price indexes

Description

stack() combines two price indexes with common levels, stacking index values and percent-
change contributions for one index after the other.

unstack() breaks up a price index into a list of indexes for each time period.

These methods can be used in a map-reduce to make an index with multiple aggregation structures
(like a Paasche index).

Usage

S3 method for class 'piar_index'
stack(x, y, ...)

S3 method for class 'piar_index'
unstack(x, ...)

Arguments

x A price index, as made by, e.g., elemental_index().

y A price index, or something that can coerced into one. If x is a period-over-
period index then y is coerced into a chainable index; otherwise, y is coerced
into a direct index.

... Not currently used.

Value

A price index that inherits from chainable_piar_index if x is a period-over-period index, or
direct_piar_index if x is a fixed-base index. If both x and y are aggregate indexes then the result
will also inherit from aggregate_piar_index.

unstack() returns a list of price indexes with the same class as x.

32 summary.piar_index

Note

It may be necessary to use rebase() prior to stacking fixed-based price indexes to ensure they have
the same base period.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
merge.piar_index(), split.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

Examples

index1 <- as_index(matrix(1:6, 2))

index2 <- index1
time(index2) <- 4:6

stack(index1, index2)

Unstack does the reverse

all.equal(
c(unstack(index1), unstack(index2)),
unstack(stack(index1, index2))

)

summary.piar_index Summarize a price index

Description

Summarize an index as a matrix of index values (i.e., the five-number summary for each period). If
there are percent-change contributions, then these are also summarized as a matrix.

Usage

S3 method for class 'piar_index'
summary(object, ...)

Arguments

object A price index, as made by, e.g., elemental_index().

... Additional arguments passed to summary.matrix().

Value

A list of five-number summaries.

time.piar_index 33

Note

This function is still experimental and may change in the future.

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4),
contrib = TRUE

)

elemental <- with(prices, elemental_index(rel, period, ea))

summary(elemental)

time.piar_index Get the time periods for a price index

Description

Methods to get and set the time periods for a price index.

Usage

S3 method for class 'piar_index'
time(x, ...)

time(x) <- value

S3 replacement method for class 'piar_index'
time(x) <- value

S3 method for class 'piar_index'
start(x, ...)

S3 method for class 'piar_index'
end(x, ...)

Arguments

x A price index, as made by, e.g., elemental_index().

... Not currently used.

value A character vector, or something that can be coerced into one, giving the re-
placement time periods for x.

34 update.piar_aggregation_structure

Value

time() return a character vector with the time periods for a price index. start() and end() return
the first and last time period.

The replacement method returns a copy of x with the time periods in value.

See Also

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
merge.piar_index(), split.piar_index(), stack.piar_index(), vcov.aggregate_piar_index()

update.piar_aggregation_structure

Update an aggregation structure

Description

Price update the weights in a price index aggregation structure.

Usage

S3 method for class 'piar_aggregation_structure'
update(object, index, period = end(index), ..., r = NULL)

Arguments

object A price index aggregation structure, as made by aggregation_structure().

index A price index, or something that can be coerced into one. Usually an aggregate
price index as made by aggregate().

period The time period used to price update the weights. The default uses the last period
in index.

... Not currently used.

r Order of the generalized mean to update the weights. The default uses the order
used to aggregate index if it’s an aggregate index; otherwise, the default is 1 for
an arithmetic index.

Value

A copy of object with price-updated weights using the index values in index.

See Also

aggregate() to make an aggregated price index.

Other aggregation structure methods: as.matrix.piar_aggregation_structure(), levels.piar_aggregation_structure(),
weights.piar_aggregation_structure()

vcov.aggregate_piar_index 35

Examples

A simple aggregation structure
1
|-----+-----|
11 12
|---+---| |
111 112 121
(1) (3) (4)

aggregation_weights <- data.frame(
level1 = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

pias <- as_aggregation_structure(aggregation_weights)

index <- as_index(
matrix(1:9, 3, dimnames = list(c("111", "112", "121"), NULL))

)

weights(pias, ea_only = FALSE)

weights(update(pias, index), ea_only = FALSE)

vcov.aggregate_piar_index

Bootstrap variance for a price index with replicate weights

Description

Estimate the sampling variance for an aggregate price index when using a sample of elemental
aggregates.

Usage

S3 method for class 'aggregate_piar_index'
vcov(object, repweights, ..., mse = TRUE, sparse = FALSE)

Arguments

object An aggregate price index, as made by aggregate().

repweights A matrix, or something that can be coerced into one, of bootstrap replicate
weights with a row for each elemental aggregate and a column for each replicate.

... Not currently used.

36 vcov.aggregate_piar_index

mse Should variance be centered off the value of the index in object (the default),
or the mean of the replicates?

sparse Use sparse matrices from Matrix when aggregating the index. Faster for indexes
with large aggregation structures. The default uses regular dense matrices.

Details

This function is a simple wrapper that reaggregates the elemental indexes in object using the
bootstrap replicate weights in repweights to get a collection of aggregate indexes from which the
variance is calculated.

This approach is usually applicable when elemental aggregates are sampled with a stratified design
that follows the aggregation structure, so that there is no correlation between the index values for
different levels of the index. It ignores any variation from the elemental indexes (which often
use judgmental sampling), and ultimately depends on the method of generating replicate weights.
(Chapters 3 and 4 of Selvanathan and Rao (1994), especially section 4.7, provide analytic variance
estimators for some common price indexes that are applicable with simple random sampling.)

Note that any missing elemental indexes need to be explicitly imputed prior to using this method,
otherwise they will propagate throughout the variance calculation.

Value

A matrix of variances with a row for each upper-level index and a column for each time period.

Source

The vcov() method was influenced by a SAS routine by Justin Francis that was first ported to R by
Ambuj Dewan, and subsequently rewritten by Steve Martin.

References

Selvanathan, E. A., and Rao, D. S. P. (1994). Index Numbers: A Stochastic Approach. MacMillan.

See Also

The sps_repweights() function in the sps package to generate replicates weights when elemental
aggregates are sampled using sequential Poisson sampling.

Other index methods: [.piar_index(), aggregate.piar_index(), as.data.frame.piar_index(),
chain(), contrib(), head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(),
merge.piar_index(), split.piar_index(), stack.piar_index(), time.piar_index()

Examples

prices <- data.frame(
rel = 1:8,
period = rep(1:2, each = 4),
ea = rep(letters[1:2], 4)

)

A two-level aggregation structure

weights.piar_aggregation_structure 37

pias <- aggregation_structure(
list(c("top", "top", "top"), c("a", "b", "c")), 1:3

)

repweights <- matrix(c(0, 2, 3, 1, 2, 4, 2, 3, 3), 3)

Calculate Jevons elemental indexes

elemental <- with(prices, elemental_index(rel, period, ea))

Aggregate

index <- aggregate(elemental, pias, na.rm = TRUE)

Calculate variance

vcov(index, repweights)

weights.piar_aggregation_structure

Get the weights for an aggregation structure

Description

Get and set the weights for a price index aggregation structure.

Usage

S3 method for class 'piar_aggregation_structure'
weights(object, ..., ea_only = TRUE, na.rm = FALSE)

weights(object) <- value

S3 replacement method for class 'piar_aggregation_structure'
weights(object) <- value

Arguments

object A price index aggregation structure, as made by aggregation_structure().

... Not currently used.

ea_only Should weights be returned for only the elemental aggregates (the default)? Set-
ting to FALSE gives the weights for the entire aggregation structure.

na.rm Should missing values be removed when aggregating the weights (i.e., when
ea_only = FALSE)? By default, missing values are not removed.

value A numeric vector of weights for the elemental aggregates of object.

38 [.piar_index

Value

weights() returns a named vector of weights for the elemental aggregates. The replacement
method replaces these values without changing the aggregation structure. If ea_only = FALSE then
the return value is a list with a named vector of weights for each level in the aggregation structure.

See Also

Other aggregation structure methods: as.matrix.piar_aggregation_structure(), levels.piar_aggregation_structure(),
update.piar_aggregation_structure()

Examples

A simple aggregation structure
1
|-----+-----|
11 12
|---+---| |
111 112 121
(1) (3) (4)

aggregation_weights <- data.frame(
level1 = c("1", "1", "1"),
level2 = c("11", "11", "12"),
ea = c("111", "112", "121"),
weight = c(1, 3, 4)

)

pias <- as_aggregation_structure(aggregation_weights)

Extract the weights

weights(pias)

... or update them

weights(pias) <- 1:3
weights(pias)

[.piar_index Extract and replace index values

Description

Methods to extract and replace index values like a matrix.

[.piar_index 39

Usage

S3 method for class 'piar_index'
x[i, j, ...]

S3 replacement method for class 'piar_index'
x[i, j, ...] <- value

Arguments

x A price index, as made by, e.g., elemental_index().

i, j Indices for the levels and time periods of a price index. See details.

... Not currently used.

value A numeric vector or price index. See details.

Details

The extraction method treats x like a matrix of index values with (named) rows for each level and
columns for each time period in x. Unlike a matrix, dimensions are never dropped as subscripting x
always returns an index object. This means that subscripting with a matrix is not possible, and only
a "submatrix" can be extracted. As x is not an atomic vector, subscripting with a single index like
x[1] extracts all time periods for that level.

The replacement method similarly treat x like a matrix. If value is an index object with the same
number of time periods as x[i, j] and it inherits from the same class as x, then the index values
and percent-change contributions of x[i, j] are replaced with those for the corresponding levels of
value. If value is not an index, then it is coerced to a numeric vector and behaves the same as re-
placing values in a matrix. Note that replacing the values of an index will remove the corresponding
percent-change contributions (if any). Unlike extraction, it is possible to replace value in x using a
logical matrix or a two-column matrix of indices.

Subscripting an aggregate index cannot generally preserve the aggregation structure if any levels
are removed or rearranged, and in this case the resulting index is not an aggregate index. Simi-
larly, replacing the values for an aggregate index generally breaks consistency in aggregation, and
therefore the result is not an aggregate index.

Value

A price index that inherits from chainable_piar_index if x is a period-over-period index, or
direct_piar_index if x is a fixed-base index. If x inherits from aggregate_piar_index then [
returns an aggregate index if the levels are unchanged.

See Also

Other index methods: aggregate.piar_index(), as.data.frame.piar_index(), chain(), contrib(),
head.piar_index(), is.na.piar_index(), levels.piar_index(), mean.piar_index(), merge.piar_index(),
split.piar_index(), stack.piar_index(), time.piar_index(), vcov.aggregate_piar_index()

40 [.piar_index

Examples

index <- as_index(matrix(1:6, 2))

index["1",]

index[, 2]

index[1,] <- 1 # can be useful for doing specific imputations

index

Index

∗ aggregation structure methods
as.matrix.piar_aggregation_structure,

7
levels.piar_aggregation_structure,

25
update.piar_aggregation_structure,

34
weights.piar_aggregation_structure,

37
∗ index methods

[.piar_index, 38
aggregate.piar_index, 2
as.data.frame.piar_index, 6
chain, 12
contrib, 14
head.piar_index, 20
is.na.piar_index, 23
levels.piar_index, 25
mean.piar_index, 26
merge.piar_index, 27
split.piar_index, 30
stack.piar_index, 31
time.piar_index, 33
vcov.aggregate_piar_index, 35

[.piar_index, 4, 7, 13, 14, 20, 23, 26–28, 31,
32, 34, 36, 38

[<-.piar_index ([.piar_index), 38

aggregate(), 6, 17, 27, 34, 35
aggregate.chainable_piar_index

(aggregate.piar_index), 2
aggregate.direct_piar_index

(aggregate.piar_index), 2
aggregate.piar_index, 2, 7, 13, 14, 20, 23,

26–28, 31, 32, 34, 36, 39
aggregate_piar_index, 4, 24, 31, 39
aggregate_piar_index (piar_index), 28
aggregation_structure, 5
aggregation_structure(), 3, 8, 9, 19, 21,

25, 34, 37

anyNA.piar_index (is.na.piar_index), 23
as.data.frame(), 6–8, 10, 11, 17
as.data.frame.piar_aggregation_structure

(as.matrix.piar_aggregation_structure),
7

as.data.frame.piar_index, 4, 6, 13, 14, 20,
23, 26–28, 31, 32, 34, 36, 39

as.matrix(), 4, 6, 10, 11, 17
as.matrix.piar_aggregation_structure,

7, 25, 34, 38
as.matrix.piar_index

(as.data.frame.piar_index), 6
as_aggregation_structure, 9
as_aggregation_structure(), 6, 8
as_index, 10
as_index(), 7, 13, 17

carry_backwards (impute_prices), 21
carry_forward (impute_prices), 21
carry_forward(), 17, 30
chain, 4, 7, 12, 14, 20, 23, 26–28, 31, 32, 34,

36, 39
chain(), 17
chainable_piar_index, 11, 13, 17, 20, 24,

28, 31, 39
chainable_piar_index (piar_index), 28
contrib, 4, 7, 13, 14, 20, 23, 26–28, 31, 32,

34, 36, 39
cut(), 16, 21, 29

direct_piar_index, 11, 13, 17, 24, 28, 31, 39
direct_piar_index (piar_index), 28

elemental_index, 15
elemental_index(), 3, 6, 7, 13, 14, 20, 23,

25, 26, 28, 30–33, 39
end.piar_index (time.piar_index), 33
expand_classification, 18
expand_classification(), 6

fs_prices (price_data), 29

41

42 INDEX

fs_weights (price_data), 29

gpindex::back_period(), 30
gpindex::base_period(), 30
gpindex::contributions(r)(), 16
gpindex::factor_weights(r)(), 3
gpindex::generalized_mean(), 3, 16, 21,

22, 26
gpindex::generalized_mean(r)(), 3, 16
gpindex::nested_transmute(), 17
gpindex::outliers, 30

head(), 20
head.piar_index, 4, 7, 13, 14, 20, 23, 26–28,

31, 32, 34, 36, 39

impute_prices, 21
is.na.piar_index, 4, 7, 13, 14, 20, 23,

26–28, 31, 32, 34, 36, 39
is_aggregate_index (is_index), 24
is_aggregation_structure, 24
is_chainable_index (is_index), 24
is_direct_index (is_index), 24
is_index, 24

levels.piar_aggregation_structure, 8,
25, 34, 38

levels.piar_index, 4, 7, 13, 14, 20, 23, 25,
27, 28, 31, 32, 34, 36, 39

levels<-.piar_index
(levels.piar_index), 25

make.unique(), 17
mean.piar_index, 4, 7, 13, 14, 20, 23, 26, 26,

28, 31, 32, 34, 36, 39
merge(), 4
merge.piar_index, 4, 7, 13, 14, 20, 23, 26,

27, 27, 31, 32, 34, 36, 39
ms_prices (price_data), 29
ms_weights (price_data), 29

piar_aggregation_structure, 9, 24
piar_aggregation_structure

(aggregation_structure), 5
piar_index, 11, 17, 24, 28
price_data, 29
price_relative, 29
price_relative(), 16, 17, 22

rebase (chain), 12

rebase(), 17

shadow_price (impute_prices), 21
shadow_price(), 17, 30
split.default(), 30
split.piar_index, 4, 7, 13, 14, 20, 23,

26–28, 30, 32, 34, 36, 39
split<-.piar_index (split.piar_index),

30
stack.piar_index, 4, 7, 13, 14, 20, 23,

26–28, 31, 31, 34, 36, 39
start.piar_index (time.piar_index), 33
summary.matrix(), 32
summary.piar_index, 32

tail(), 20
tail.piar_index (head.piar_index), 20
time.piar_index, 4, 7, 13, 14, 20, 23, 26–28,

31, 32, 33, 36, 39
time<- (time.piar_index), 33

unchain (chain), 12
unstack.piar_index (stack.piar_index),

31
update(), 6
update.piar_aggregation_structure, 8,

25, 34, 38

vcov.aggregate_piar_index, 4, 7, 13, 14,
20, 23, 26–28, 31, 32, 34, 35, 39

weights(), 6
weights.piar_aggregation_structure, 8,

25, 34, 37
weights<-

(weights.piar_aggregation_structure),
37

	aggregate.piar_index
	aggregation_structure
	as.data.frame.piar_index
	as.matrix.piar_aggregation_structure
	as_aggregation_structure
	as_index
	chain
	contrib
	elemental_index
	expand_classification
	head.piar_index
	impute_prices
	is.na.piar_index
	is_aggregation_structure
	is_index
	levels.piar_aggregation_structure
	levels.piar_index
	mean.piar_index
	merge.piar_index
	piar_index
	price_data
	price_relative
	split.piar_index
	stack.piar_index
	summary.piar_index
	time.piar_index
	update.piar_aggregation_structure
	vcov.aggregate_piar_index
	weights.piar_aggregation_structure
	[.piar_index
	Index

