Package ‘prioritylasso’

November 9, 2020

Type Package

Title Analyzing Multiple Omics Data with an Offset Approach
Version 0.2.5

Date 2020-11-04

Author Simon Klau, Roman Hornung, Alina Bauer

Maintainer Roman Hornung <hornung@ibe.med.uni-muenchen.de>

Description Fits successive Lasso models for several blocks of (omics) data with different priori-
ties and takes the predicted values as an offset for the next block.

Depends R (>=2.10.0)

License GPL-2

LazyData TRUE

Imports survival, glmnet, utils
RoxygenNote 7.1.1

Suggests testthat, knitr, rmarkdown, pROC
VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-11-09 19:50:06 UTC

R topics documented:

Index

2 cvim_prioritylasso

cvm_prioritylasso prioritylasso with several block specifications

Description

Runs prioritylasso for a list of block specifications and gives the best results in terms of cv error.

Usage

cvm_prioritylasso(
X,
Y,
weights,
family,
type.measure,
blocks.list,
max.coef.list = NULL,
blockl.penalization = TRUE,
lambda.type = "lambda.min",

standardize = TRUE,
nfolds = 10,
foldid,

cvoffset = FALSE,
cvoffsetnfolds = 10,

)
Arguments

X a (nxp) matrix or data frame of predictors with observations in rows and predic-
tors in columns.

Y n-vector giving the value of the response (either continuous, numeric-binary 0/1,
or Surv object).

weights observation weights. Default is 1 for each observation.

family should be "gaussian" for continuous Y, "binomial” for binary Y, "cox" for Y of

type Surv.

type.measure The accuracy/error measure computed in cross-validation. It should be "class"
(classification error) or "auc" (area under the ROC curve) if family="binomial”,
"mse" (mean squared error) if family="gaussian" and "deviance" if family="cox"
which uses the partial-likelihood.

blocks.list list of the format 1ist(list(bp1=...,bp2=...,),list(bpl=,...,bp2=...,),...).

For the specification of the entries, see prioritylasso.

max.coef.list list of max.coef vectors. The first entries are omitted if block1.penalization
= FALSE. Default is NULL.

cvm_prioritylasso 3

blockl.penalization
whether the first block should be penalized. Default is TRUE.

lambda. type specifies the value of lambda used for the predictions. lambda.min gives lambda
with minimum cross-validated errors. lambda.1se gives the largest value of
lambda such that error is within 1 standard error of the minimum. Note that
lambda. 1se can only be chosen without restrictions of max. coef.

standardize logical, whether the predictors should be standardized or not. Default is TRUE.
nfolds the number of CV procedure folds.

foldid an optional vector of values between 1 and nfold identifying what fold each
observation is in.

cvoffset logical, whether CV should be used to estimate the offsets. Default is FALSE.

cvoffsetnfolds the number of folds in the CV procedure that is performed to estimate the offsets.
Default is 10. Only relevant if cvoffset=TRUE.

Other arguments that can be passed to the function cv.glmnet.

Value

object of class prioritylasso with the following elements. If these elements are lists, they contain
the results for each penalized block of the best result.

lambda. ind list with indices of lambda for 1ambda. type.

lambda. type type of lambda which is used for the predictions.

lambda.min list with values of lambda for 1ambda. type.

min.cvm list with the mean cross-validated errors for lambda. type.

nzero list with numbers of non-zero coefficients for 1ambda. type.

glmnet.fit list of fitted glmnet objects.

name a text string indicating type of measure.

blocklunpen if block1.penalization = FALSE, the results of either the fitted glm or coxph ob-
ject.

best.blocks character vector with the indices of the best block specification.
best.max.coef vector with the number of maximal coefficients corresponding to best.blocks.
coefficients coefficients according to the results obtained with best.blocks.

call the function call.

Note

The function description and the first example are based on the R package ipflasso.

Author(s)

Simon Klau
Maintainer: Simon Klau (<simonklau@ibe.med.uni-muenchen.de>)

4 pl_data

References

Klau, S., Jurinovic, V., Hornung, R., Herold, T., Boulesteix, A.-L. (2018). Priority-Lasso: a simple
hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinfor-
matics 19, 322

See Also

pl_data, prioritylasso, cvr2.ipflasso

Examples

cvm_prioritylasso(X = matrix(rnorm(50x500),50,500), Y = rnorm(50), family = "gaussian”,
type.measure = "mse"”, lambda.type = "lambda.min”, nfolds = 5,
blocks.list = list(list(bp1=1:75, bp2=76:200, bp3=201:500),
list(bp1=1:75, bp2=201:500, bp3=76:200)))
Not run:
cvm_prioritylasso(X = pl_data[,1:1028], Y = pl_data[,1029], family = "binomial”,
type.measure = "auc”, standardize = FALSE, blockl.penalization = FALSE,
blocks.list = list(list(1:4, 5:9, 10:28, 29:1028),
list(1:4, 5:9, 29:1028, 10:28)),
max.coef.list = list(c(Inf, Inf, Inf, 10), c(Inf, Inf, 10, Inf)))
End(Not run)

pl_data Simulated AML data with binary outcome

Description

A data set containing the binary outcome and 1028 predictor variables of 400 artificial AML pa-
tients.

Usage
pl_data

Format

A data frame with 400 rows and 1029 variables:

pl_out: (pl_datal[,1029]) binary outcome representing refractory status.

bl: (pl_datal[,1:4]) 4 binary variables representing variables with a known influence on the out-
come.

b2: (pl_data[,5:9]) 5 continuous variables representing clinical variables.
b3: (pl_datal,10:28]) 19 binary variables representing mutations.
b4: (pl_datal,29:1028]) 1000 continuous variables representing gene expression data.

predict.prioritylasso 5

Details

We generated the data in the following way: We took the empirical correlation of 1028 variables
related to 315 AML patients. This correlation served as a correlation matrix when generating 1028
multivariate normally distributed variables with the R function rmvnorm. Because we didn’t have
a positive definite matrix, we took the nearest positive definite matrix according to the function
nearPD. The variables that should be binary were dichotomized, so that their marginal probabilities
corresponded to the marginal probabilities they were based on. The coefficients were defined by

* beta_b1<-c(0.8,0.8,0.6,0.6)

e beta_b2<-c(rep(@.5,3),rep(0,2))

* beta_b3 <-c(rep(0.4,4),rep(0,15))

* beta_b4 <-c(rep(0.5,5),rep(0.3,5),rep(0,990)).

We included them in the vector beta <-c(beta_b1,beta_b2,beta_b3,beta_b4) and calculated
the probability through

pi = exp(Bxx)/(1+ exp(f * x))

where x denotes our data matrix with 1028 predictor variables. Finally we got the outcome through
pl_out <-rbinom(400,size =1,p =pi).

predict.prioritylasso Predictions from prioritylasso

Description

Makes predictions for a prioritylasso object. It can be chosen between linear predictors or fitted

values.
Usage
S3 method for class 'prioritylasso'
predict(object, newdata, type = c("link”, "response”), ...)
Arguments
object An object of class prioritylasso.
newdata (nnew x p) matrix or data frame with new values.
type Specifies the type of predictions. 1ink gives the linear predictors for all types of

response and response gives the fitted values.

Further arguments passed to or from other methods.

Value

Predictions that depend on type.

6 prioritylasso

Author(s)

Simon Klau

See Also

pl_data, prioritylasso

Examples

pl_bin <- prioritylasso(X = matrix(rnorm(50%190),50,190), Y = rbinom(50,1,0.5),
family = "binomial”, type.measure = "auc”,
blocks = list(block1=1:13,block2=14:80, block3=81:190),
blockl.penalization = TRUE, lambda.type = "lambda.min”,

standardize = FALSE, nfolds = 3)
newdata_bin <- matrix(rnorm(10%*190),10,190)

predict(object = pl_bin, newdata = newdata_bin, type = "response”)

prioritylasso Patient outcome prediction based on multi-omics data taking practi-
tioners’ preferences into account

Description

Fits successive Lasso models for several ordered blocks of (omics) data and takes the predicted
values as an offset for the next block.

Usage

prioritylasso(
X,
Y,
weights,
family,
type.measure,
blocks,
max.coef = NULL,
blockl.penalization = TRUE,
lambda. type = "lambda.min",
standardize = TRUE,
nfolds = 10,
foldid,
cvoffset = FALSE,
cvoffsetnfolds = 10,

prioritylasso 7

Arguments
X a (nxp) matrix of predictors with observations in rows and predictors in columns.
Y n-vector giving the value of the response (either continuous, numeric-binary 0/1,
or Surv object).
weights observation weights. Default is 1 for each observation.
family should be "gaussian" for continuous Y, "binomial" for binary Y, "cox" for Y of

type Surv.

type.measure accuracy/error measure computed in cross-validation. It should be "class" (clas-
sification error) or "auc" (area under the ROC curve) if family="binomial”,
"mse" (mean squared error) if family="gaussian"” and "deviance" if family="cox"
which uses the partial-likelihood.

blocks list of the format 1ist(bp1=...,bp2=...,), where the dots should be replaced
by the indices of the predictors included in this block. The blocks should form
a partition of 1:p.

max . coef vector with integer values which specify the number of maximal coefficients
for each block. The first entry is omitted if block1.penalization = FALSE.
Default is NULL.

block1.penalization
whether the first block should be penalized. Default is TRUE.

lambda. type specifies the value of lambda used for the predictions. lambda.min gives lambda
with minimum cross-validated errors. lambda.1se gives the largest value of
lambda such that the error is within 1 standard error of the minimum. Note that
lambda. 1se can only be chosen without restrictions of max. coef.

standardize logical, whether the predictors should be standardized or not. Default is TRUE.

nfolds the number of CV procedure folds.

foldid an optional vector of values between 1 and nfold identifying what fold each
observation is in.

cvoffset logical, whether CV should be used to estimate the offsets. Default is FALSE.

cvoffsetnfolds the number of folds in the CV procedure that is performed to estimate the offsets.
Default is 10. Only relevant if cvoffset=TRUE.

other arguments that can be passed to the function cv.glmnet.

Details

For block1.penalization = TRUE, the function fits a Lasso model for each block. First, a standard
Lasso for the first entry of blocks (block of priority 1) is fitted. The predictions are then taken
as an offset in the Lasso fit of the block of priority 2, etc. For block1.penalization = FALSE,
the function fits a model without penalty to the block of priority 1 (recommended as a block with
clinical predictors where p < n). This is either a generalized linear model for family "gaussian" or
"binomial", or a Cox model. The predicted values are then taken as an offset in the following Lasso
fit of the block with priority 2, etc.

The first entry of blocks contains the indices of variables of the block with priority 1 (first block
included in the model). Assume that blocks =1ist(1:100,101:200,201:300) then the block

8 prioritylasso

with priority 1 consists of the first 100 variables of the data matrix. Analogously, the block with
priority 2 consists of the variables 101 to 200 and the block with priority 3 of the variables 201 to
300.

Value

object of class prioritylasso with the following elements. If these elements are lists, they contain
the results for each penalized block.

lambda. ind list with indices of lambda for 1ambda. type.

lambda. type type of lambda which is used for the predictions.

lambda.min list with values of lambda for 1lambda. type.

min.cvm list with the mean cross-validated errors for 1ambda. type.

nzero list with numbers of non-zero coefficients for 1ambda. type.

glmnet.fit list of fitted glmnet objects.

name a text string indicating type of measure.

blocklunpen ifblock1.penalization = FALSE, the results of either the fitted glm or coxph object
corresponding to best.blocks.

coefficients vector of estimated coefficients. If block1.penalization = FALSE and family =
gaussian or binomial, the first entry contains an intercept.

call the function call.

Note

The function description and the first example are based on the R package ipflasso. The second
example is inspired by the example of cv.glmnet from the glmnet package.

Author(s)

Simon Klau, Roman Hornung, Alina Bauer
Maintainer: Simon Klau (<simonklau@ibe.med.uni-muenchen.de>)

References

Klau, S., Jurinovic, V., Hornung, R., Herold, T., Boulesteix, A.-L. (2018). Priority-Lasso: a simple
hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinfor-
matics 19, 322

See Also

pl_data, cvm_prioritylasso, cvr.ipflasso, cvr2.ipflasso

prioritylasso 9

Examples

gaussian
prioritylasso(X = matrix(rnorm(50x500),50,500), Y = rnorm(50), family = "gaussian”,
type.measure = "mse"”, blocks = list(bp1=1:75, bp2=76:200, bp3=201:500),
max.coef = c(Inf,8,5), blockl.penalization = TRUE,
lambda.type = "lambda.min"”, standardize = TRUE, nfolds = 5, cvoffset = FALSE)
Not run:
cox
simulation of survival data:
n <- 50;p <- 300
nzc <- trunc(p/10)
x <= matrix(rnorm(n*p), n, p)
beta <- rnorm(nzc)
fx <- x[, seq(nzc)l%*%beta/3
hx <- exp(fx)
survival times:
ty <- rexp(n,hx)
censoring indicator:
tcens <- rbinom(n = n,prob = .3,size = 1)
library(survival)
y <- Surv(ty, 1-tcens)
blocks <- list(bp1=1:20, bp2=21:200, bp3=201:300)
run prioritylasso:

prioritylasso(x, y, family = "cox"”, type.measure = "deviance”, blocks = blocks,
block1.penalization = TRUE, lambda.type = "lambda.min", standardize = TRUE,
nfolds = 5)
binomial

using pl_data:
prioritylasso(X = pl_data[,1:1028], Y = pl_data[,1029], family = "binomial”, type.measure = "auc”,
blocks = list(bp1=1:4, bp2=5:9, bp3=10:28, bp4=29:1028), standardize = FALSE)
End(Not run)

Index

x datasets
pl_data, 4

cv.glmnet, 8
cvm_prioritylasso, 2, 8
cvr.ipflasso, 8
cvr2.ipflasso, 4, 8

nearPD, 5
pl_data, 4,4,6,8
predict.prioritylasso, 5

prioritylasso, 2,4, 6,6

rmvnorm, 5

10

	cvm_prioritylasso
	pl_data
	predict.prioritylasso
	prioritylasso
	Index

