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Abstract

The R package sharp (Stability-enHanced Approaches using Resampling Procedures)
provides an integrated framework for stability-enhanced variable selection, graphical mod-
elling and clustering. In stability selection, a feature selection algorithm is combined with
a resampling technique to estimate feature selection probabilities. Features with selec-
tion proportions above a threshold are considered stably selected. Similarly, a clustering
algorithm is applied on multiple subsamples of items to compute co-membership propor-
tions in consensus clustering. The consensus clusters are obtained by clustering using co-
membership proportions as a measure of similarity. We calibrate the hyper-parameters
of stability selection (or consensus clustering) jointly by maximising a consensus score
calculated under the null hypothesis of equiprobability of selection (or co-membership),
which characterises instability. The package offers flexibility in the modelling, includes
diagnostic and visualisation tools, and allows for parallelisation.

Keywords: stability selection, consensus clustering, calibration, regularisation, variable selec-
tion, graphical modelling, structural equation modelling, R.

1. Introduction

With the emergence of high-resolution data in health, environmental and social sciences, there
is a need for efficient statistical methods to extract relevant features and provide interpretable
results. These include unsupervised methods for descriptive analyses and supervised methods
to investigate associations between predictors (explanatory variables) and outcomes (response
variables). We focus here on unsupervised models including (i) clustering, (ii) graphical mod-
elling, and (iii) dimensionality reduction with principal component analysis (PCA), as well
as supervised approaches including (i) classification, (ii) regression, (iii) structural equation
modelling (SEM), and (iv) Partial Least Squares (PLS) (Chadeau-Hyam, Campanella, Jom-
bart, Bottolo, Portengen, Vineis, Liquet, and Vermeulen 2013).

We use regularisation procedures to induce sparsity in the sets of (i) edges (graphical models,
see Meinshausen and Bühlmann 2006; Friedman, Hastie, and Tibshirani 2007; Bodinier, Fil-
ippi, Nøst, Chiquet, and Chadeau-Hyam 2023a), (ii) variables contributing to a latent variable
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(PCA or PLS, Zou, Hastie, and Tibshirani 2006; Shen and Huang 2008; Liquet, de Micheaux,
Hejblum, and Thiébaut 2015), (iii) predictors contributing to the definition of the outcome
(regression, Tibshirani 1996), or (iv) arrows of a directed acyclic graph corresponding to
path coefficients (SEM, Ross Jacobucci and McArdle 2016). The level of sparsity in these
regularised models is controlled by a penalty parameter λ that needs to be calibrated. For
simplicity, we focus throughout this paper on least absolute shrinkage and selection operator
(LASSO) regularisation, which is controlled by a single penalty parameter λ. The approach
scales to more complex penalties relying on multiple hyper-parameters (e.g., Elastic Net, Zou
and Hastie 2005).

To generate reproducible results, penalised models can be complemented by stability ap-
proaches. In stability selection, a feature selection model is combined with resampling pro-
cedures to compute feature selection proportions, defined as the proportion of models fitted
on different samples with the same hyper-parameter(s) in which a given feature is selected
(Meinshausen and Bühlmann 2010). Stably selected features are then defined as those with
selection proportions above a threshold π ∈]0, 1[. Stability selection results are less likely
to be driven by outlying observations and the selection proportion can be interpreted as a
measure of feature importance, conditionally on all other important features.

Similarly, consensus clustering enables the identification of stable partitions by applying a
clustering algorithm on multiple subsamples of the items (Monti, Tamayo, Mesirov, and
Golub 2003). The co-membership proportions calculated over the subsamples are stored in
a consensus matrix, which is then used as a measure of similarity. We implemented con-
sensus clustering combined with hierarchical clustering, partitioning around medoids (PAM),
K-means, Gaussian mixture models (GMM), or density-based spatial clustering of applica-
tions with noise (DBSCAN) (Bodinier, Vuckovic, Rodrigues, Filippi, Chiquet, and Chadeau-
Hyam 2023b). For all these algorithms, the number of clusters is determined by a single
hyper-parameter. Distance-based clustering algorithms (hierarchical clustering, PAM and
DBSCAN) can also be applied on weighted distances calculated using the clustering objects
on subsets of attributes (COSA) algorithm, which introduces a second hyper-parameter λ for
the regularisation (Friedman and Meulman 2004; Bodinier et al. 2023b).

Simulation studies showed that these stability approaches generate a substantial increase in
selection or clustering performance compared to a single run of the algorithm, and that our
consensus score is relevant for the calibration of hyper-parameters (Bodinier et al. 2023a,b).
Real-world applications also provided novel and interpretable results in different settings (El-
liott, Whitaker, Bodinier, Eales, Riley, Ward, Cooke, Darzi, Chadeau-Hyam, and Elliott
2021; Whitaker, Elliott, Bodinier, Barclay, Ward, Cooke, Donnelly, Chadeau-Hyam, and El-
liott 2022; Petrovic, Bodinier, Dagnino, Whitaker, Karimi, Campanella, Haugdahl Nøst, Poli-
doro, Palli, Krogh, Tumino, Sacerdote, Panico, Lund, Dugué, Giles, Severi, Southey, Vineis,
Stringhini, Bochud, Sandanger, Vermeulen, Guida, and Chadeau-Hyam 2022; Dagnino, Bo-
dinier, Guida, Smith-Byrne, Petrovic, Whitaker, Haugdahl Nøst, Agnoli, Palli, Sacerdote,
Panico, Tumino, Schulze, Johansson, Keski-Rahkonen, Scalbert, Vineis, Johansson, Sandan-
ger, Vermeulen, and Chadeau-Hyam 2021).

However, both stability selection and consensus clustering remain under-used, partly due
to the difficult choice of hyper-parameters. We previously proposed to calibrate the hyper-
parameter(s) of stability selection and consensus clustering by maximising a consensus score
measuring stability over the subsamples Bodinier et al. (2023a,b). Unlike error-based cali-
bration techniques, the consensus score is computed from the sets of results obtained across
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the resampling iterations and can be used for the calibration of supervised or unsupervised
models.

We created the R package sharp (Stability-enHanced Approaches using Resampling Proce-
dures) to facilitate and expand the use of stability-based approaches. Our package offers an
integrated framework for stability selection and consensus clustering, and an automated cal-
ibration of hyper-parameters using a consensus score (Bodinier et al. 2023b). It can be used
for stability-enhanced (i) clustering, (ii) (multi-block) graphical modelling, (iii) regression,
(iv) structural equation modelling, and (vi) dimensionality reduction.

Stability selection had previously been implemented for variable selection in regression in the
R package stabs (Hofner, Boccuto, and Göker 2015). In stabs, the amount of regularisation
λ is chosen based on thresholds in selection proportion π and in the expected number of
falsely selected variables provided by the user (Meinshausen and Bühlmann 2010; Shah and
Samworth 2013). In sharp, stability selection can also be used for graphical modelling and
dimensionality reduction. The choice of hyper-parameters is fully automated by default in
sharp, but it can also rely on the same constraints in expected numbers of false positives.

The R package clue (Hornik 2005) enables the aggregation of multiple clusterings based on
optimisation techniques. Consensus clustering using instead co-membership proportions has
subsequently been proposed (Monti et al. 2003) and implemented in the R packages Con-

sensusClusterPlus (Wilkerson and Hayes 2010) and M3C (John, Watson, Russ, Goldmann,
Ehrenstein, Pitzalis, Lewis, and Barnes 2020). The choice of the number of clusters is based
on a maximisation of the Delta score in ConsensusClusterPlus, or on the Relative Cluster
Stability Index (RCSI) in M3C. In a previous study, we showed better clustering performances
using the consensus score used in sharp than with the Delta score in both simulated and real
datasets (Bodinier et al. 2023b). Our consensus score is also very fast to compute, and yields
clustering performances that are at least as good as when using the RCSI for a much lower
computational cost (Bodinier et al. 2023b).

In this paper, we first describe stability selection, consensus clustering and the calibration of
hyper-parameters by maximising the consensus score. Second, we outline their implementa-
tion in sharp and present the architecture of the package. Third, we illustrate the use of the
main functions on simulated datasets. We also cover more advanced features of the package
including parallelisation and use with external functions, and provide recommendations for
fine-tuning of the models. Finally, we apply stability selection and consensus clustering on
publicly available gene expression datasets.
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2. Statistical framework

2.1. Stability selection

In stability selection, the selection count Cj(λ) for feature j ∈ {1, . . . , N} is the number of
models fitted on K different subsamples of the observations with the same hyper-parameter λ
that include feature j (Meinshausen and Bühlmann 2010). A feature denotes here a variable
(in regression or dimensionality reduction), an edge (in graphical modelling), or an arrow (in
structural equation modelling). The feature selection probability is estimated by its selection
proportion Γj(λ), calculated as:

Γj(λ) =
Cj(λ)

K

Features with a selection proportion Γj(λ) above a threshold π ∈]0, 1[ are considered stably
selected. The binary stability selection status Zj(λ, π) indicates if feature j is stably selected
(Zj(λ, π) = 1) or not (Zj(λ, π) = 0):

Zj(λ, π) = 1Γj(λ)≥π

We implemented stability selection for penalised (i) regression using the glmnet package
(Friedman, Hastie, and Tibshirani 2010), (ii) SEM based on a series of regressions fitted
using glmnet (only possible when all variables are observed) or using OpenMx (Neale, Hunter,
Pritikin, Zahery, Brick, Kirkpatrick, Estabrook, Bates, Maes, and Boker 2016) (for a more
flexible modelling accommodating latent variables), (iii) Gaussian graphical modelling using
glassoFast (Sustik, Calderhead, and Clavel 2023), (iv) Principal Component Analysis using
elasticnet (Zou et al. 2006), and (v) Partial Least Squares using sgPLS (Liquet et al. 2015).

2.2. Consensus clustering

In consensus clustering, the co-membership count Cj(λ, g) between the two items in the jth

pair of items, where j ∈ {1, . . . , N}, is the number of partitions of g clusters obtained with
regularisation parameter λ (if using weighted distances) over the K subsampling iterations
where the two items in the pair are (i) both drawn in the subsample, and (ii) assigned to
the same cluster (Monti et al. 2003). The co-sampling count Hj ≤ K is the number of
subsamples including both items from the jth pair. The co-membership proportion Γj(λ, g)
is then calculated as:

Γj(λ, g) =
Cj(λ, g)

Hj

The g consensus clusters are then obtained by applying a distance-based clustering algorithm
(e.g., hierarchical clustering) using the co-membership proportions as a measure of similarity.
The binary consensus co-membership status Zj(λ, g) indicates if the items in the jth pair are
in the same consensus cluster (if Zj(λ, g) = 1), or not (Zj(λ, g) = 0).

We implemented consensus clustering with (i) hierarchical clustering and K-means using the
stats package (R Core Team 2023), (ii) PAM using cluster (Maechler, Rousseeuw, Struyf,
Hubert, and Hornik 2022), (iii) DBSCAN using dbscan (Hahsler, Piekenbrock, and Doran
2019), and (iv) GMM using mclust (Scrucca, Fop, Murphy, and Raftery 2016). The number
of clusters g is a hyper-parameter for all clustering algorithms, except for DBSCAN, where
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the minimum distance between two items from the same cluster is used instead. Weighted
distances calculated using the COSA algorithm implemented in rCOSA can be used for hier-
archical clustering, PAM or DBSCAN (Kampert, Meulman, and Friedman 2017).

2.3. Calibration using the consensus score

The hyper-parameter(s) λ and π in stability selection, or g (and λ, if weighted) in consensus
clustering, are calibrated by maximising the sharp score, a consensus score measuring results
consistency over the subsamples (Bodinier et al. 2023b). For clarity, these hyper-parameter(s)
are denoted by θ in this section, where θ = (λ, π) for stability selection and θ = g or θ = (λ, g)
for consensus clustering. To define the consensus score, we first introduce the integers X1(θ),
X0(θ), N1(θ) and N0(θ) as:

X1(θ) =
N

∑

j=1

Cj(θ)Zj(θ)

X0(θ) =
N

∑

j=1

Cj(θ)(1 − Zj(θ))

N1(θ) =
N

∑

j=1

HjZj(θ)

N0(θ) =
N

∑

j=1

Hj(1 − Zj(θ))

where Hj(θ) = K, ∀j ∈ {1, . . . , N} in stability selection.

We assume that the dependency between the counts Ci(θ) and Cj(θ), where i ̸= j, can
be fully explained by the structure encoded in Z(θ). This implies that the Cj(θ), where
j ∈ {1, . . . , N}, follow independent binomial distributions, conditionally on the corresponding
subsampling count Hj and status Zj(θ):

Cj(θ)|Hj , Zj(θ) ∼ B (Hj , pj(θ))

To calculate the consensus score, we make the assumption that the probabilities pj(θ) are the
same for all stably selected features (or consensus co-members) on the one hand, and for all
features that are not stably selected (or items that belong to different consensus clusters) on
the other hand, that is:

pj(θ) = pZj(θ)(θ)

where p0(θ) and p1(θ) are two unknown probabilities.

As a consequence, X0(θ) and X1(θ) also follow binomial distributions:

X0(θ)|H, Z(θ) ∼ B (N0(θ), p0(θ))

X1(θ)|H, Z(θ) ∼ B (N1(θ), p1(θ))

We consider that stability is characterised by a probability p1(θ) that is larger than p0(θ). The
consensus score S(θ) is defined as the z statistic from a two-sample z test for the comparison
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of proportions where the null hypothesis of instability is p1(θ) ≤ p0(θ):

S(θ) =
p̂1(θ) − p̂0(θ)

√

p̂t(θ) (1 − p̂t(θ))
(

1
N1(θ) + 1

N0(θ)

)

where p̂0(θ) = X0(θ)
N0(θ) , p̂1 = X1(θ)

N1(θ) , and p̂t = X0(θ)+X1(θ)
N0(θ)+N1(θ) .

The consensus score increases with stability and is maximised when proportions Γj(θ) are
equal to 1 for all features j such that Zj(θ) = 1 and equal to 0 for all features j such that
Zj(θ) = 0. The hyper-parameter(s) in θ are (jointly) calibrated by maximising the consensus
score S(θ).

3. Implementation

3.1. Pseudocode

By default, we use a grid search algorithm to calibrate the hyper-parameters in stability
selection or consensus clustering. The values of hyper-parameter(s) to be tested for calibration
need to be defined beforehand. For stability selection, we recommend the grid Λ for the
regularisation parameter λ such that resulting model sizes range from 0 to min(N, n/2),
where n is the sample size. For the threshold π, we use the set Π ranging from 0.01 to 0.99
with increments of 0.01. For consensus clustering, we consider numbers of clusters ranging
from 2 to G = n/4 by default. The choice of the set Λ for the regularisation parameter λ
in weighted distance calculation needs to be tailored for the application, but values ranging
from 0.1 to 10 generally provide good performances (Bodinier et al. 2023b). The choice of
the grids is illustrated in Section 4.9.2.

Given these grids of hyper-parameters, our procedure for stability selection or consensus
clustering can be decomposed into four steps. First, we calculate the selection (for stability
selection) or co-membership (for consensus clustering) counts C(θ) and proportions Γ(θ) for
all values θ ∈ Θ (Algorithm 1). To ensure reproducibility of the results, the random number
generator is initialised at each subsampling iteration.

When fitting regularised models with multiple regularisation parameters λ ∈ Λ, computation
time can be reduced by using the estimate obtained with Λi as a starting point for the
gradient descent algorithm with Λi+1, where Λ is sorted in decreasing order (Simon, Friedman,
Hastie, and Tibshirani 2011). Warm start is implemented directly in the R package glmnet

for penalised regression and in our function PenalisedGraphical() in sharp which calls
functions from glassoFast (Friedman et al. 2010; Sustik et al. 2023; Bodinier et al. 2023a).

This first step is the most computationally expensive as it requires the application of the
(selection or clustering) algorithm on K subsamples. Computation time can be reduced using
parallelisation over the K independent subsamples. We propose two ways of parallelisation in
sharp: (i) a built-in procedure using functionalities from the parallel package (which relies
on forking, only available on Unix systems), or (ii) users have the opportunity to manually
run a subset of iterations on different cores and concatenate the results using our Combine()

function (see Section 4.4).

Second, we define the stability selection status Z(λ, π) for all λ ∈ Λ and π ∈ Π (for stability
selection, Algorithm 2), or the consensus co-membership status Z(λ, g) for all λ ∈ Λ and
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Algorithm 1 Calculation of the counts C(θ) and proportions Γ(θ) for all θ ∈ Θ

1: Inputs: data X, set Θ, subsample proportion τ , number of subsamples K
2: Outputs: subsampling counts H, counts C(θ) and proportions Γ(θ) for all θ ∈ Θ
3:

4: Initialise H = 0N , C(θ) = 0N and Γ(θ) = 0N for all θ ∈ Θ
5: for k ∈ {1, . . . , K} do

6: Initialise the random number generator state at k
7: Define the subsample Xk with a proportion τ of the observations in X
8: Extract the vector Hk of subsampling status
9: H = H + Hk

10: for θ ∈ Θ do

11: Apply the algorithm on Xk with parameter θ

12: Extract the status Ck(θ)
13: C(θ) = C(θ) + Ck(θ)
14: end for

15: end for

16:

17: for j ∈ {1, . . . , N} do

18: Γj(θ) =
Cj(θ)
Hj(θ)

19: end for

g ∈ {1, . . . , G} (for consensus clustering, Algorithm 3), based on the proportions calculated
in Step 1.

Algorithm 2 Define the stability selection sets Z(λ, π) for all λ ∈ Λ and π ∈ Π

1: Inputs: set Λ, set Π, selection proportions Γ(λ) for all λ ∈ Λ
2: Outputs: stability selection sets Z(λ, π) for all λ ∈ Λ and π ∈ Π
3:

4: Initialise Z(λ, π) = 0N for all λ ∈ Λ and π ∈ Π
5: for λ ∈ Λ do

6: for π ∈ Π do

7: for j ∈ {1, . . . , N} do

8: Zj(λ, π) = 1Γj(λ)≥π

9: end for

10: end for

11: end for

Third, we calculate the consensus score for all visited combinations of hyper-parameters
(Algorithm 4). The calibrated hyper-parameters in θ̂ are defined as the ones that yield the
largest value of the consensus score.

Finally, we extract the stability selection set or consensus clustering obtained in Step 2 (Al-
gorithm 2 or 3) with the calibrated hyper-parameters identified in Step 3 (Algorithm 4).

As an alternative to grid search, it is also possible to use optimisation methods implemented
in the R package nloptr (Johnson 2007). The lower and upper bounds are defined as above
for the construction of the grids of regularisation parameters. The largest regularisation
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Algorithm 3 Define the consensus co-memberships Z(λ, g) for all λ ∈ Λ and g ∈ {1, . . . , G}

1: Inputs: set Λ, number G, co-membership proportions Γ(λ, g) for all λ ∈ Λ
2: Outputs: consensus co-memberships Z(λ, g) for all λ ∈ Λ and g ∈ {1, . . . , G}
3:

4: Initialise Z(λ, g) = 0N for all λ ∈ Λ and g ∈ {1, . . . , G}
5: for λ ∈ Λ do

6: for g ∈ {1, . . . , G} do

7: Apply distance-based clustering on distance (1 − Γ(λ, g)) with g clusters
8: for j ∈ {1, . . . , N} do

9: Extract consensus co-membership Zj(λ, g) for the jth pair
10: end for

11: end for

12: end for

Algorithm 4 Calibrate the hyper-parameter(s) in θ

1: Inputs: set θ, counts C(θ), status Z(θ) for all θ ∈ θ

2: Outputs: calibrated θ̂

3:

4: Initialise Smax = 0
5: for θ ∈ θ do

6: X1(θ) =
∑N

j=1 Cj(θ)Zj(θ)

7: X0(θ) =
∑N

j=1 Cj(θ)(1 − Zj(θ))

8: N1(θ) =
∑N

j=1 HjZj(θ)

9: N0(θ) =
∑N

j=1 Hj(1 − Zj(θ))

10: S(θ) = p̂1(θ)−p̂0(θ)
√

p̂t(θ)(1−p̂t(θ))

(

1
N1(θ)

+ 1
N0(θ)

)

11: if S(θ) ≥ Smax then

12: θ̂ = θ

13: end if

14: end for
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parameter is used as a starting point. The set of visited hyper-parameters is then determined
iteratively by the optimisation algorithm based on the current hyper-parameter value and
consensus score. We use stopping criteria based on the number of iterations and absolute
change in regularisation parameter (see Section 4.5). The grid search procedure detailed
above would give identical results when using the set of visited hyper-parameters. Note that
grid search may be faster for regularised approaches as it allows for warm start.

3.2. Architecture of the package

Stability selection can be conducted using four main functions, including VariableSelection()

for regression, BiSelection() for dimensionality reduction, StructuralModel() for struc-
tural equation modelling, and GraphicalModel() for Gaussian graphical modelling (Figure
1). Consensus clustering is implemented in the Clustering() function.

CART()

SelectionAlgo()

SparsePCA()

SparsePLS()

GroupPLS()

SparseGroupPLS()

GraphicalAlgo()

PenalisedOpenMx()

PenalisedLinearSystem()

PenalisedGraphical()PenalisedRegression()

ClusteringAlgo()

HierarchicalClustering()

PAMClustering()

DBSCANClustering()

KMeansClustering()

GMMClustering()

VariableSelection() StructuralModel() GraphicalModel() Clustering()BiSelection()

StabilityMetrics() ConsensusScore()

Resample()

PFER()

Dimensionality reduction Regression/classification

Structural equation model

Gaussian graphical model Clustering

A. Wrapper functions

B. Automated data checks 

C. Main functions

D. Resampling

E. Scores

Figure 1: Architecture of the sharp package: main functions and their dependencies.

These main functions (Figure 1C) internally call Resample() (Figure 1D) for subsampling
or bootstrapping (for stability selection only). At each resampling iteration, the selection or
clustering algorithm is run via a wrapper function that reads and returns data in a stan-
dardised format (Figure 1A). The user can choose the algorithm by specifying the function
to use in argument implementation of the main function. Wrapper functions are called via
intermediate functions (Figure 1B) that perform automated checks, including the exclusion
of variables with null standard deviation in a given subsample. The consensus score, along
with the upperbound of the expected number of false positives (for stability selection only,
see Section 4.9.4) are calculated in separate functions (Figure 1E).
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The package also includes a range of functions for results extraction and visualisation. The
outputs of the main functions are assigned specific classes and come with S3 methods in-
cluding print, summary and plot. Other functions are designed to be applied to these
outputs, including CalibrationPlot() to visualise the consensus scores obtained with differ-
ent hyper-parameters, Stable() to extract the stability selection set or consensus clustering
membership, SelectionProportions() and ConsensusMatrix().

4. Usage

4.1. Requirements

To execute the lines of code presented in this paper, the R packages fake, sharp, corpcor

(Schäfer and Strimmer 2005), rpart (Therneau and Atkinson 2023) and plotrix (Lemon 2006)
need to be installed and loaded.

R> library("fake")

R> library("sharp")

R> library("corpcor")

R> library("rpart")

R> library("plotrix")

We first use the package fake to generate the toy datasets that will be used throughout the
paper to illustrate functionalities of the package sharp:

R> # Regression

R> set.seed(1)

R> data_reg <- SimulateRegression(

+ n = 100,

+ pk = 20,

+ beta_abs = 1

+ )

R> # Classification

R> set.seed(1)

R> data_class <- SimulateRegression(

+ n = 1000,

+ pk = 50,

+ ev_xy = 0.9,

+ family = "binomial"

+ )

R> # Structural equation modelling

R> set.seed(1)

R> data_sem <- SimulateStructural(

+ n = 200,

+ pk = c(5, 5, 5),

+ nu_between = 0.2,

+ v_between = 1
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+ )

R> # Gaussian graphical modelling

R> set.seed(1)

R> data_ggm <- SimulateGraphical(

+ n = 100,

+ pk = 20,

+ topology = "scale-free"

+ )

R> # Clustering

R> set.seed(1)

R> data_clust <- SimulateClustering(

+ n = c(5, 10, 20),

+ pk = 20,

+ ev_xc = 0.3

+ )

4.2. Typical use

We first illustrate the use of the main functions on artificial data generated with the R

package fake (Figure 2) (Bodinier 2023). The simulation models in fake are based on (mix-
tures of) multivariate Gaussian distributions and allow for the simulation of (i) an outcome
expressed as a linear combination of a subset of predictors and normally distributed noise
with SimulateRegression(), (ii) variables with relationships encoded in a linear structural
equation model with SimulateStructural(), (iii) data from a Gaussian graphical model
with SimulateGraphical(), and (iv) clusters of items where attributes have cluster-specific
means with SimulateClustering() (Bodinier et al. 2023a,b) (Figure 2A).

Figure 2B-D compiles code and generated plots illustrating the typical use of the main func-
tions implemented in sharp. The parametrisation of the models, including the choice of
the number of subsampling iterations K and definition of the grids of hyper-parameters is
discussed below (Section 4.9).

The consensus score obtained with visited hyper-parameters can be visualised in the calibra-
tion plot (Figure 2C). For stability selection (in the first three columns), the consensus score
is colour-coded and represented as a function of the regularisation parameter λ on the x-axis,
and of the threshold in selection proportion π on the y-axis. The average number q of se-
lected features across the K models fitted with the corresponding amount of regularisation λ
is also reported at the top of the heatmap. The combination of hyper-parameters that yields
the most stable model (in darker red) is at the intersection of the horizontal and vertical
dashed lines. For consensus clustering, the consensus score is represented as a function of the
number of clusters (last column in Figure 2C). The chosen number of clusters is indicated by
a vertical dashed line. For both stability selection and consensus clustering, the calibrated
hyper-parameters can be obtained with the function Argmax() (Figure 2C).

Figure 2D shows the final result, where the stability selection set is represented as red bars
in a barplot of selection proportions (for variable selection), as arrows in a directed acyclic
graph (for structural equation modelling), or as edges in an undirected graph (for Gaussian
graphical modelling). For consensus clustering, the consensus clusters are colour-coded and
separated by blue lines in the consensus matrix (Figure 2D).
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A. Example data set.seed(1) 
data_reg <- SimulateRegression( 
  n = 100, 
  pk = 20, 
  beta_abs = 1 
) 
x_reg <- data_reg$xdata 
y_reg <- data_reg$ydata

set.seed(1) 
data_sem <- SimulateStructural( 
  n = 200, 
  pk = c(5, 5, 5), 
  nu_between = 0.2, 
  v_between = 1 
) 
x_sem <- data_sem$data

set.seed(1) 
data_ggm <- SimulateGraphical( 
  n = 100, 
  pk = 20, 
 topology = "scale-free" 
) 
x_ggm <- data_ggm$data

set.seed(1) 
data_clust <- SimulateClustering( 
  n = c(5, 10, 20), 
  pk = 20, 
  ev_xc = 0.3 
) 
x_clust <- data_clust$data

B. Stability selection/ 
consensus clustering

stab_reg <- VariableSelection( 
  xdata = x_reg, 
  ydata = y_reg 
)

dag <- LayeredDAG( 
  layers = c(5, 5, 5) 
) 
Lambda <- LambdaSequence( 
  lmax = 1, 
  lmin = 1e-5 
) 
stab_sem <- StructuralModel( 
  xdata = x_sem, 
  adjacency = dag, 
  Lambda = Lambda 
)

stab_ggm <- GraphicalModel( 
  xdata = x_ggm 
)

stab_clust <- Clustering( 
  xdata = x_clust 
)

C. Calibration plot CalibrationPlot(stab_sem) CalibrationPlot(stab_ggm) CalibrationPlot(stab_clust)

D. Results visualisation plot(stab_reg) plot(stab_sem) plot(stab_ggm) plot(stab_clust)

Argmax(stab_sem) 
          lambda   pi 
> [1,] 0.3511192 0.63

Argmax(stab_ggm) 
          lambda   pi 
> [1,]  0.475961 0.45

Argmax(stab_clust) 
       nc lambda 
> [1,]  3     NA
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Argmax(stab_reg) 
          lambda   pi 
> [1,] 0.4621656 0.74

Figure 2: Typical use of functions implemented in sharp for stability selection and consensus
clustering.

4.3. Reproducibility

To ensure that two runs with the same parameters generate the same results, the random
number generator is initialised using the argument seed.

R> stab1 <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ K = 5,

+ seed = 1,

+ verbose = FALSE

+ )

R> stab1_bis <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ K = 5,

+ seed = 1,

+ verbose = FALSE
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+ )

R> all(SelectionProportions(stab1) == SelectionProportions(stab1_bis))

[1] TRUE

4.4. Parallelisation

Stability approaches can easily be parallelised over the different subsamples (see Section 3.1).
We use internal functionalities from the parallel package and propose to choose the number
of cores for parallelisation via argument n_cores (only available on Unix systems) (R Core
Team 2023).

R> stab <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ K = 100,

+ n_cores = 2,

+ verbose = FALSE

+ )

Alternatively, any of the main functions (Figure 1C) can be run multiple times with different
seeds and results can be merged using Combine() (available on all platforms).

R> stab1 <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ K = 10,

+ seed = 1,

+ verbose = FALSE

+ )

R> stab2 <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ K = 10,

+ seed = 2,

+ verbose = FALSE

+ )

R> stab <- Combine(stab1, stab2)

R> stab$params$K

[1] 20

4.5. Optimisation

By default, we use a grid search approach maximising the consensus score. Alternatively, opti-
misation methods implemented in nloptr can be used with argument optimisation="nloptr".
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In this case, the algorithm NLOPT_GN_DIRECT_L is used by default (Gablonsky and Kelley
2001). The optimisation algorithm and stopping criteria can be chosen via the argument
opts which is passed to functions from nloptr.

R> stab <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ optimisation = "nloptr"

+ )

4.6. Flexibility

Additional arguments

Any of the arguments of functions that are called to execute the algorithm within the wrapper
functions (Figure 1A) can be specified directly in the main functions (Figure 1C). This is done
using the ellipsis (...) argument in the functions showed in Figure 1A, B and C.

For example, variables can be forced in a LASSO model (i.e., not penalised) using the argu-
ment penalty.factor from glmnet (Friedman et al. 2010). Although this is not an explicit
argument of VariableSelection(), it can directly be used for stability selection. In the code
below, we force the first three variables to be included in the model (i.e., we do not penalise
their coefficients) using argument penalty.factor. The remaining 17 variables are penalised
(corresponding entries are set to 1 in the input vector). Even with a large penalty parameter,
the first three variables have nonzero coefficients:

R> stab <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ Lambda = 1,

+ K = 1,

+ penalty.factor = c(0, 0, 0, rep(1, 17)),

+ verbose = FALSE

+ )

R> print(stab$Beta)

, , 1

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11

s1 1.5071 1.401676 1.300818 0 0 0 0 0 0 0 0

var12 var13 var14 var15 var16 var17 var18 var19 var20

s1 0 0 0 0 0 0 0 0 0

Choice of algorithm

The wrapper functions used by default in each of the main functions are circled in red in
Figure 1. The wrapper function to apply at each of the resampling iterations can be specified
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in argument implementation of the main function. For example, classification and regression
trees (CART) can be used as an alternative to regularised models (Breiman, Friedman, Ol-
shen, and Stone 1984). In sharp, the structure of the decision tree is controlled by the number
of splits. The features used in any of the splits are considered selected. This is implemented
in the wrapper function CART():

R> stab <- VariableSelection(

+ xdata = data_reg$xdata,

+ ydata = data_reg$ydata,

+ implementation = CART,

+ verbose = FALSE

+ )

Using other algorithms

Selection and clustering algorithms beyond those readily implemented in sharp (Figure 1A)
can be used by creating new wrapper functions with the same standardised inputs and out-
puts. Required arguments of wrapper functions for stability selection are xdata, ydata (for
supervised modelling only), Lambda and the ellipsis (...). Clustering wrapper functions must
have the arguments xdata, Lambda (for weighted distances only), nc and the ellipsis (...).

To be read correctly within the main functions in sharp, the output of the wrapper function
must be (i) a named list with selected (a binary matrix indicating the selection status)
and beta_full (matrix of the same size with model coefficients) for VariableSelection(),
StructuralModel or BiSelection(), (ii) a three-dimensional array storing adjacency matri-
ces for GraphicalModel(), or (iii) a named list with comembership (a three-dimensional array
storing co-membership matrices) and weight (a matrix of attribute weights) for Clustering().

To illustrate this functionality, we write below a function that infers conditional independence
relationships using a threshold applied on the shrunk estimate of the partial correlation ma-
trix, as implemented in corpcor (Schäfer and Strimmer 2005). Adjacency matrices obtained
with different thresholds (provided in argument Lambda) are stored in the three-dimensional
array adjacency and returned by the function.

R> ShrinkageSelection <- function(xdata, Lambda, ...) {

+ mypcor <- corpcor::pcor.shrink(xdata,

+ verbose = FALSE

+ )

+ adjacency <- array(NA, dim = c(nrow(mypcor), ncol(mypcor), nrow(Lambda)))

+ for (k in 1:nrow(Lambda)) {

+ A <- ifelse(abs(mypcor) >= Lambda[k, 1], yes = 1, no = 0)

+ diag(A) <- 0

+ adjacency[, , k] <- A

+ }

+ return(list(adjacency = adjacency))

+ }

The function ShrinkageSelection() can then be used as implementation in GraphicalModel().
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Internally, this function will be applied on the subsamples and used as the selection algorithm
to calculate selection proportions.

R> stab <- GraphicalModel(

+ xdata = data_ggm$data,

+ Lambda = matrix(c(0.01, 0.05, 0.1), ncol = 1),

+ implementation = ShrinkageSelection,

+ verbose = FALSE

+ )

Other examples with user-defined functions for variable selection are provided in the package
documentation.

4.7. Additional tools for regression models

In a regression setting, stability selection aims to identify the predictors that are associated
with the outcome but it cannot directly be used to generate predictions as it does not re-
turn regression coefficients. To evaluate prediction performances of stably selected variables,
we propose to fit a Ridge regression model with all stably selected variables as predictors.
The penalty parameter of the Ridge model is calibrated by cross validation as implemented
in glmnet (Friedman et al. 2010). From this refitted model, we can (i) extract regression
coefficients, and (ii) generate predictions. In particular, this can be used to evaluate the ex-
planatory performances of the model and the conditional contribution of each of the selected
features.

To avoid bias and over-fitting, the data is split into non-overlapping training and test sets
using the function Split(). In the example below, stability selection is applied on 70% of
the observations. The same observations are used to fit the Ridge model with stably selected
predictors. Prediction performances of the refitted model are evaluated on the remaining 30%
of the observations. These two steps are done internally in ExplanatoryPerformance(). The
fitted coefficients and area under the curve (AUC, for a binary outcome), or R squared (for
a continuous outcome) are reported.

R> set.seed(1)

R> ids <- Split(

+ data = data_class$ydata,

+ family = "binomial",

+ tau = c(0.7, 0.3)

+ )

R> xtrain <- data_class$xdata[ids[[1]], , drop = FALSE]

R> ytrain <- data_class$ydata[ids[[1]], , drop = FALSE]

R> xtest <- data_class$xdata[ids[[2]], , drop = FALSE]

R> ytest <- data_class$ydata[ids[[2]], , drop = FALSE]

R> stab <- VariableSelection(

+ xdata = xtrain,

+ ydata = ytrain,

+ family = "binomial",

+ verbose = FALSE
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+ )

R> perf <- ExplanatoryPerformance(

+ xdata = xtrain,

+ ydata = ytrain,

+ new_xdata = xtest,

+ new_ydata = ytest,

+ stability = stab

+ )

R> perf$AUC

[1] 0.8809746

Further, we use the function Incremental() to compare the performances of Ridge models
where predictors are sequentially added by decreasing selection proportions to (i) quantify the
contribution of each variable to the prediction conditionally on more stable variables, and (ii)
validate the calibration of stability selection (Bodinier et al. 2023a). In Figure 3, we observe
no further increase in performance beyond the calibrated model (red points).

R> incr <- Incremental(

+ xdata = xtrain,

+ ydata = ytrain,

+ new_xdata = xtest,

+ new_ydata = ytest,

+ stability = stab,

+ n_predictors = ncol(data_class$xdata),

+ verbose = FALSE

+ )

R> plot(incr, ylim = c(0.5, 1))

4.8. Additional tools for simulation studies

The ability of a selection algorithm to recover the correct set of features can be evaluated
on simulated data where the true structure of the model is known. This can be done us-
ing sharp in combination with the simulation package fake (Bodinier 2023). The function
SelectionPerformance() returns several performance metrics by comparing the sets of fea-
tures that are (i) used to generate the data, and (ii) selected when running the algorithm on
the data.

R> set.seed(1)

R> simul <- SimulateRegression(

+ n = 100,

+ pk = 20

+ )

R> stab <- VariableSelection(

+ xdata = simul$xdata,

+ ydata = simul$ydata,
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Figure 3: Explanatory performance of logistic models where predictors are incrementally
added by order of decreasing selection proportion. The six red points indicate the six models
sequentially including stably selected predictors. Grey points correspond to models including
one or more predictors that are not stably selected.

+ verbose = FALSE

+ )

R> SelectionPerformance(stab, simul)

TP FN FP TN sensitivity specificity accuracy precision recall

1 4 2 0 14 0.6666667 1 0.9 1 0.6666667

F1_score

1 0.8

Similarly, the ability of a clustering algorithm to recover the correct clusters can be evaluated
by comparing (i) the true grouping structure used in the simulation, and (ii) the clusters
detected by the algorithm. This can be done using the function ClusteringPerformance().

R> set.seed(1)

R> simul <- SimulateClustering(

+ n = c(30, 30, 30),

+ ev_xc = 0.4

+ )

R> stab <- Clustering(

+ xdata = simul$data,

+ verbose = FALSE

+ )

R> ClusteringPerformance(stab, simul)
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TP FN FP TN sensitivity specificity accuracy precision

1 1166 139 146 2554 0.8934866 0.9459259 0.928839 0.8887195

recall F1_score rand ari jaccard

1 0.8934866 0.8910967 0.928839 0.838251 0.8035837

4.9. Fine-tuning of the models

Number of iterations

The performance of stability approaches depends on the number of resampling iterations that
are performed. In a simulation study for the graphical LASSO, optimal performances were
reached fairly quickly (around 100 iterations) (Bodinier et al. 2023a). More generally, we
observe very limited changes in the sets of stably selected features from models using 1,000
iterations or more. Argument K defines the number of resampling iterations.

R> lout <- NULL

R> K_vect <- c(10, 100, 1000)

R> for (K in K_vect) {

+ stab <- VariableSelection(

+ xdata = data_class$xdata,

+ ydata = data_class$ydata,

+ K = K,

+ verbose = FALSE

+ )

+ lout <- c(lout, list(SelectionPerformance(stab, data_class)))

+ }

R> names(lout) <- K_vect

R> print(lout)

$‘10‘

TP FN FP TN sensitivity specificity accuracy precision recall

1 13 2 0 35 0.8666667 1 0.96 1 0.8666667

F1_score

1 0.9285714

$‘100‘

TP FN FP TN sensitivity specificity accuracy precision recall

1 14 1 0 35 0.9333333 1 0.98 1 0.9333333

F1_score

1 0.9655172

$‘1000‘

TP FN FP TN sensitivity specificity accuracy precision recall

1 14 1 0 35 0.9333333 1 0.98 1 0.9333333

F1_score

1 0.9655172
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Grids of hyper-parameters

The maximisation of the consensus score for calibration of the models is not a convex opti-
misation problem. To make sure that the global maximum is not missed by the grid search
procedure, the sets of hyper-parameter values to explore needs to be chosen carefully. We
recommend that the grid contains hyper-parameter values so that visited models range from
very small to very large numbers of selected features. For models where the hyper-parameters
cannot be directly interpreted in terms of numbers of selected features (e.g., LASSO as imple-
mented in glmnet), the calibration plot can help in the definition of the grids. In the example
below, we show the calibration plots from two runs with (i) a poorly defined grid Lambda, and
(ii) a well defined grid Lambda (Figure 4). The largest stability score obtained with the poorly
defined grid (Figure 4, left panel) is much smaller than with the well defined grid (right panel).
The global maximum of the stability score is missed in the first run. Visual inspection of the
calibration plot using the poorly defined grid suggests that smaller regularisation parameters
should be considered as the largest stability score is obtained for the smallest regularisation
parameter (as indicated by the vertical dashed line on the left hand side of the heatmap). The
calibration plot should show a clear peak of stability if the grid of hyper-parameters is well
defined. Poor calibration of the model can generate weaker selection performances (F1-score
of 0.57 compared to 0.75).

R> par(mfrow = c(1, 2), mar = c(7, 7, 7, 5))

R> # Run 1

R> stab <- VariableSelection(

+ xdata = data_class$xdata,

+ ydata = data_class$ydata,

+ Lambda = LambdaSequence(lmax = 0.2, lmin = 0.1),

+ verbose = FALSE

+ )

R> CalibrationPlot(stab)

R> SelectionPerformance(stab, data_class)

TP FN FP TN sensitivity specificity accuracy precision recall

1 4 11 0 35 0.2666667 1 0.78 1 0.2666667

F1_score

1 0.4210526

R> # Run 2

R> stab <- VariableSelection(

+ xdata = data_class$xdata,

+ ydata = data_class$ydata,

+ Lambda = LambdaSequence(lmax = 0.2, lmin = 0.01),

+ verbose = FALSE

+ )

R> CalibrationPlot(stab)

R> SelectionPerformance(stab, data_class)

TP FN FP TN sensitivity specificity accuracy precision recall

1 14 1 0 35 0.9333333 1 0.98 1 0.9333333
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F1_score

1 0.9655172
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Figure 4: Calibration plots obtained for two runs with different grids of regularisation
parameter λ. Each heatmap represents the consensus score (colour-coded) for different pairs
of penalty parameter λ (x-axis) and threshold in selection proportion π (y-axis). The average
number of selected features q corresponding the penalty parameter is showed on the z-axis.

Subsample size

Model performances may also depend on the parameters of the resampling procedure: the
subsample size and the number and composition of subsamples to draw (Bodinier et al. 2023a).

For supervised stability selection with binary or categorical outcomes, we ensure that all
subsamples contain the same proportions of observations from each category as in the full
sample by default. The subsamples can be defined more specifically by writing a function
to use in argument resampling (see examples for the function Resample() in the package
documentation).

The subsample proportion tau does not generally affect selection performances (Figure 5), as
long as values are not too high (values above 0.9 are not recommended to ensure that there
is sufficient data perturbation) or too small (to ensure that there is enough data to run the
algorithm at each iteration).

R> par(mfrow = c(1, 3), mar = c(7, 7, 7, 5))

R> lout <- NULL

R> tau_vect <- c(0.2, 0.5, 0.8)

R> for (tau in tau_vect) {

+ stab <- VariableSelection(

+ xdata = data_class$xdata,

+ ydata = data_class$ydata,

+ tau = tau,

+ family = "binomial",

+ verbose = FALSE
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+ )

+ CalibrationPlot(stab)

+ lout <- c(lout, list(SelectionPerformance(stab, data_class)))

+ }

R> names(lout) <- tau_vect

R> print(lout)

$‘0.2‘

TP FN FP TN sensitivity specificity accuracy precision recall

1 14 1 0 35 0.9333333 1 0.98 1 0.9333333

F1_score

1 0.9655172

$‘0.5‘

TP FN FP TN sensitivity specificity accuracy precision recall

1 14 1 0 35 0.9333333 1 0.98 1 0.9333333

F1_score

1 0.9655172

$‘0.8‘

TP FN FP TN sensitivity specificity accuracy precision recall

1 14 1 0 35 0.9333333 1 0.98 1 0.9333333

F1_score

1 0.9655172
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Figure 5: Calibration plots obtained for three runs with different subsample proportions
tau.

Constrained optimisation

In stability selection, a relationship between the number of selected features, threshold in
selection proportion and the per family error rate (PFER) can be established (Meinshausen
and Bühlmann 2010). The PFER is the expectation of type I errors, which can be interpreted
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in selection models as the expected number of false positives (i.e., features that are selected but
should not be). Error control can be incorporated in the calibration by adding a constraint
in the optimisation problem limiting the set of visited models to those with an expected
PFER below a given threshold (Bodinier et al. 2023a). The use of a constraint on the
expected number of false positives through the argument PFER_thr is recommended for high
dimensional graphical models (Bodinier et al. 2023a). It ensures that sparser graphs are
generated and selected edges are the most reliable ones.

R> stab <- GraphicalModel(

+ xdata = data_ggm$data,

+ verbose = FALSE

+ )

R> SelectionPerformance(stab, data_ggm)

TP FN FP TN sensitivity specificity accuracy precision recall

1 19 0 6 165 1 0.9649123 0.9684211 0.76 1

F1_score

1 0.8636364

R> stab <- GraphicalModel(

+ xdata = data_ggm$data,

+ PFER_thr = 20,

+ verbose = FALSE

+ )

R> SelectionPerformance(stab, data_ggm)

TP FN FP TN sensitivity specificity accuracy precision recall

1 19 0 3 168 1 0.9824561 0.9842105 0.8636364 1

F1_score

1 0.9268293

5. Illustration on real data

5.1. Dysregulated gene expression in lung tumours

In this section, we perform stability selection to identify a set of genes with dysregulated
expression levels in patients with Crohn’s disease compared to controls who do not have
inflammatory bowel diseases (IBD). For this, we use publicly available RNAseq data for
156 patients and 267 non-IBD controls from the IBD-Character cohort (Halfvarson, Kalla,
Adams, Satsangi, and Nowak 2022). We kept the 1,000 transcripts with the largest standard
deviations.

We first split the 423 observations into non-overlapping training (70%) and test (30%) sets.
Stability selection with logistic LASSO regression is applied on the training set by specifying
the family of the model (glmnet argument). Visual inspection of the calibration heatmap
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suggests that the grid of penalty parameter is well defined here as it includes a clear peak in
consensus score (Figure 6, left).

The 2 genes with selection proportion above 0.59 are considered stably selected (Figure 6,
middle). The logistic model including these stably selected predictors yields an AUC of 0.88
in the test set. We observe a limited increase in AUC when including additional predictors in
the model (increase in AUC < 0.02), which suggests that stably selected features carry most
of the information needed to predict the outcome (Figure 6, right).

R> par(mfrow = c(1, 3), mar = c(7, 7, 7, 5))

R> dat <- readRDS("e-mtab-11349.rds")

R> y <- dat[, 1]

R> x <- dat[, -1]

R> set.seed(1)

R> ids <- Split(data = y, family = "binomial", tau = c(0.7, 0.3))

R> stab <- VariableSelection(

+ xdata = x[ids[[1]], ],

+ ydata = y[ids[[1]]],

+ family = "binomial",

+ verbose = FALSE

+ )

R> CalibrationPlot(stab)

R> plot(stab, n_predictors = 20)

R> sum(Stable(stab))

[1] 2

R> Argmax(stab)

lambda pi

[1,] 0.1924526 0.59

R> incr <- Incremental(

+ xdata = x[ids[[1]], ],

+ ydata = y[ids[[1]]],

+ new_xdata = x[ids[[2]], ],

+ new_ydata = y[ids[[2]]],

+ stability = stab,

+ n_predictors = 20,

+ verbose = FALSE

+ )

R> plot(incr, ylim = c(0.5, 0.9))

R> incr$AUC[[sum(Stable(stab))]]

[1] 0.881534
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Figure 6: Stability selection to identify dysregulated gene expression in lung tumours com-
pared to normal tissue.

5.2. Single-cell gene expression in multiple cell lines

Consensus clustering is now applied on 250 single-cell RNA-sequencing measurements from
five cell lines, available at https://github.com/LuyiTian/sc_mixology. The 200 tran-
scripts with the largest standard deviations are retained for the analysis.

We apply consensus clustering using 2 to 10 clusters. The calibration plot shows that the
largest consensus score is obtained with 5 clusters (Figure 7, left). The calibrated consensus
matrix suggests very stable results, as co-membership proportions are close to one within
clusters and close to zero between clusters (Figure 7, right). In this heatmap, the cell labels
are coloured based on the cell line they are derived from. Reassuringly, the detected clusters
mostly correspond to the 5 cell lines (Figure 7).

R> par(mfrow = c(1, 2), mar = rep(5, 4))

R> dat <- readRDS("single_cell_10x_5cl.rds")

R> y <- dat$cell_line

R> z <- dat$doublet

R> x <- dat[, -c(1, 2)]

R> stab <- Clustering(

+ xdata = x,

+ nc = seq_len(10),

+ verbose = FALSE

+ )

R> CalibrationPlot(stab)

R> plot(

+ stab,

+ theta_star = y,

+ cex.axis = 0.3

+ )

Further inspection of the data reveals that the 6 samples that are not assigned to the correct
cluster are actually doublets and not single cells, which may explain why they are misclassified.
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Figure 7: Consensus clustering on single-cell RNA-sequencing measurements from five cell
lines.

R> table(Clusters(stab), y, z)

, , z = DBL

y

A549 H1975 H2228 H838 HCC827

1 1 0 0 0 0

2 0 0 0 0 0

3 0 3 0 0 0

4 0 3 0 0 0

5 0 0 0 0 0

, , z = SNG

y

A549 H1975 H2228 H838 HCC827

1 78 0 0 0 0

2 0 27 0 0 0

3 0 0 48 0 0

4 0 0 0 54 0

5 0 0 0 0 36

6. Conclusions

The R package sharp provides an integrated framework using stability in several contexts,
including penalised regression, graphical modelling, structural equation modelling and clus-
tering. The automated calibration procedure and visualisation tools provided should facilitate
the use of these approaches for the analysis of real-world data. Functions were implemented
to be as flexible as possible, while remaining easy to use. We believe that the homogeneous
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approach to stability across regression, dimensionality reduction, and graphical modelling
constitutes a strength of the proposed implementation. The output and visualisations have
been standardised as much as possible across these different modelling techniques to facilitate
quality checks and results interpretation. Thanks to the modular architecture of the pack-
age, more selection algorithms can be easily incorporated in the future. This opportunity
is already available to advanced users who would like to design their own functions. The R

package stablelearner (Michel Philipp and Strobl 2018) could also provides alternative mea-
sures of stability for regression models that could complement the consensus score used in
sharp.

Future versions of the sharp package may include additional functions to (i) facilitate the use
of more feature selection models, and (ii) complement other modelling techniques by stability
approaches.

Computational details

The results in this paper were obtained using R 4.3.0 with the sharp 1.4.6 package. The devel-
opment version of sharp is available from https://github.com/barbarabodinier/sharp. R

itself and all packages used are available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/ or from Bioconductor at https://www.bioconductor.

org.
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