The GAP Manual -- Chapters

  1. About GAP
  2. The Programming Language
  3. Environment
  4. Domains
  5. Rings
  6. Fields
  7. Groups
  8. Operations of Groups
  9. Vector Spaces
  10. Integers
  11. Number Theory
  12. Rationals
  13. Cyclotomics
  14. Gaussians
  15. Subfields of Cyclotomic Fields
  16. Algebraic extensions of fields
  17. Unknowns
  18. Finite Fields
  19. Polynomials
  20. Permutations
  21. Permutation Groups
  22. Words in Abstract Generators
  23. Finitely Presented Groups
  24. Words in Finite Polycyclic Groups
  25. Finite Polycyclic Groups
  26. Special Ag Groups
  27. Lists
  28. Sets
  29. Boolean Lists
  30. Strings and Characters
  31. Ranges
  32. Vectors
  33. Row Spaces
  34. Matrices
  35. Matrix Rings
  36. Matrix Groups
  37. Group Libraries
  38. Algebras
  39. Finitely Presented Algebras
  40. Matrix Algebras
  41. Modules
  42. Mappings
  43. Homomorphisms
  44. Booleans
  45. Records
  46. Combinatorics
  47. Tables of Marks
  48. Character Tables
  49. Generic Character Tables
  50. Characters
  51. Maps and Parametrized Maps
  52. Character Table Libraries
  53. Class Functions
  54. Monomiality Questions
  55. Getting and Installing GAP
  56. Share Libraries
  57. Automorphism Groups of Special Ag Groups
  58. CrystGap--The Crystallographic Groups Package
  59. The Double Coset Enumerator
  60. GRIM (Groups of Rational and Integer Matrices)
  61. The Matrix Package
  62. The MeatAxe
  63. The Polycyclic Quotient Algorithm Package
  64. Sisyphos
  65. Decomposition numbers of Hecke algebras of type A
  66. Vector Enumeration
  67. AREP
  68. Monoids and Semigroups
  69. Binary Relations
  70. Transformations
  71. Transformation Monoids
  72. Actions of Monoids
  73. The CHEVIE Package Version 4 -- a short introduction
  74. Reflections, and reflection groups
  75. Coxeter groups
  76. Finite Reflection Groups
  77. Root systems and finite Coxeter groups
  78. Algebraic groups and semi-simple elements
  79. Classes and representations for reflection groups
  80. Reflection subgroups
  81. Garside and braid monoids and groups
  82. Cyclotomic Hecke algebras
  83. Iwahori-Hecke algebras
  84. Representations of Iwahori-Hecke algebras
  85. Kazhdan-Lusztig polynomials and bases
  86. Parabolic modules for Iwahori-Hecke algebras
  87. Reflection cosets
  88. Coxeter cosets
  89. Hecke cosets
  90. Unipotent characters of finite reductive groups and Spetses
  91. Eigenspaces and $d$-Harish-Chandra series
  92. Unipotent classes of reductive groups
  93. Unipotent elements of reductive groups
  94. Affine Coxeter groups and Hecke algebras
  95. CHEVIE utility functions
  96. CHEVIE String and Formatting functions
  97. CHEVIE Matrix utility functions
  98. Cyclotomic polynomials
  99. Partitions and symbols
  100. CHEVIE utility functions -- Decimal and complex numbers
  101. Posets and relations
  102. Integral matrices and lattices
  103. The VKCURVE package
  104. Multivariate polynomials and rational fractions
  105. The VKCURVE functions
  106. Some VKCURVE utility functions
  107. Algebra package --- finite dimensional algebras

References

Index

Up

GAP 3.4.4
April 1997