
Sage, Git, & Trac
Quickstart
Configuration
You only need to do this once:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This data ends up in commits, so do it now before you forget!

Get the Sage Source Code
git clone git://github.com/sagemath/sage.git

Branch Often
A new branch is like an independent copy of the source code.
Always switch to a new branch before editing anything:

git checkout develop switch to the starting point
git branch new_branch_name create new branch
git checkout new_branch_name switch to new branch

Without an argument, the list of branches is displayed:

git branch
master

* new_branch_name * marks the current branch

When you are finished, delete unused branches:

git branch -d branch_to_delete

Where Am I?
Each change recorded by git is called a “commit”. Examine history:

git show show the most recent commit
git log list in reverse chronological order

What Did I Do?
This is probably the most important command. Example output:

git status
On branch new_branch_name = current branch name

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in
working directory)

modified: modified_file.py = file you just edited

Untracked files:
(use "git add <file>..." to include in what will be
committed)

new_file.py = file you just added

no changes added to commit
(use "git add" and/or "git commit -a")

Prepare to Commit
When you are finished, tell git which changes you want to commit:

git add filename add particular file
git add . add all modified & new

The status command then lists the staged changes:

git st
On branch new_branch_name
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: modified_file.txt
new file: new_file.txt

Commit
The commit command permanently records the staged changes. The
new commit becomes the new branch head:

git commit opens editor for commit message
git commit -m "My Commit Message"

Commits cannot be changed, but they can be discarded and re-done
with the --amend switch. Never amend commits that you have
already shared with somebody.

Summary
workspace is the file system: files that you can edit

git add filename copy file to staging
git reset HEAD filename copy staged file back

staging is a special area inside the git repository

git commit commit all staged files

commits are the permanently recorded history

git checkout -- filename copy file from repo to workspace

Merging
A commit with more than one parent is a merge commit:

git merge other_branch incorporate other branch/commit

If there is no conflict this automatically creates a new merge
commit. Otherwise, the conflicting regions are marked like this:

Here are lines that are either unchanged from the common
ancestor, or cleanly resolved because only one side changed.
<<<<<<< yours:source_file.py
Conflict resolution is hard;
let's go shopping.
=======
Git makes conflict resolution easy.
>>>>>>> theirs:source_file.py
And here is another line that is cleanly resolved or unmodified.

Edit as needed; To finish, run one of:

git commit commit your merge conflict resolution
git merge --abort discard merge attempt

Branch Heads
A git branch is just a pointer to a commit. This commit is called the
branch HEAD. You can point it elsewhere with (--hard) or without
(--soft, less common) resetting the actual files. That is, the
following discards content of the current branch and makes it
indistinguishable from a new branch that started at new_head_commit:
git reset --hard new_head_commit

There are various ways to specify a commit to reset to:
3472a854df051b57d1cb7e4934913f17f1fef820 40-digit SHA1
3472a85 the first few digits of the SHA1
branch_name the name of another branch pointing to it
6.2.beta6 a tag in the Sage git repo; Every version is tagged
origin/develop the develop branch in the remote origin
HEAD~ first parent of the current head
HEAD~2 first parent of the first parent of the current head
HEAD^2 second parent of the current head
FETCH_HEAD commit downloaded with the git fetch command

Trac and the Sage Git Repo
At http://git.sagemath.org you can browse our own git repository.
On trac tickets, you can click on the links under Branch:

Git Trac Subcommand
We have added a git trac command to interact with our git and
trac server. You can download and temporarily enable it via
git clone git@github.com:sagemath/git-trac-command.git
source git-trac-command/enable.sh

See the developer guide for how to install it on your system.

Configure Git Trac
To make changes to trac you need to have an account:
git trac config --user USER --pass PASS

Furthermore, our git repository uses your SSH keys for
authentication. Log in on http://trac.sagemath.org and go to
Preferences → SSH keys.

Downloading / Creating a Branch
git trac checkout ticket_number branch for existing ticket
git trac create "Ticket Title" create new ticket

This will get the branch from trac, or create a new one if there is
none yet attached to the ticket.

Pull Changes from Trac
git trac pull optional_ticket_number

The trac ticket number will be guessed from a number embedded in
the current branch name, or if there is a branch of the same name on
a ticket already.

Push your Changes to Trac
git trac push optional_ticket_number

Getting Help
git help command show help for (optional) command
git trac create -h help for subcommand

Sage developer guide: http://www.sagemath.org/doc/developer/

http://git.sagemath.org
http://trac.sagemath.org
http://www.sagemath.org/doc/developer/

	Quickstart
	Configuration
	Get the Sage Source Code
	Branch Often
	Where Am I?
	What Did I Do?
	Prepare to Commit
	Commit

	Summary
	Merging
	Branch Heads
	Trac and the Sage Git Repo
	Git Trac Subcommand
	Configure Git Trac
	Downloading / Creating a Branch
	Pull Changes from Trac
	Push your Changes to Trac

	Getting Help

